#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Current Progresses in Developing PET Radiopharmaceuticals for Patients in the Czech Republic


Authors: J. Adam 1;  R. Demlová 1;  Z. Řehák 1,2
Authors‘ workplace: Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno 1;  Oddělení nukleární medicíny, Masarykův onkologický ústav, Brno 2
Published in: Klin Onkol 2016; 29(Supplementum 4): 95-100
Category: Review
doi: https://doi.org/10.14735/amko20164S95

Overview

Background:
In Masaryk Memorial Cancer Institute (MMCI), there is a long-running intensive joint effort of the RECAMO project and commercial entities, involving mainly clinical evaluations of state-of-the-art PET radiopharmaceuticals leading to their future availability for Czech physicians and their patients. Recently, the PET tracers [11C]methionine and [18F]fluorocholine, among others, were developed in this cooperation, both of them tracers with high importance for oncologic positron emission tomography diagnostics. [11C]methionine, labeled by carbon-11 with a half-life of 20 min, is a proteosynthesis marker used primarily for brain tumor visualization, whereas [18F]fluorocholine, labeled by fluorine-18 with a half-life of 109 min, is a marker of synthesis of cellular membranes and cell proliferation, its primary use being PET diagnostics of prostate carcinoma.

Aim:
The results of clinical evaluations of both PET radiopharmaceuticals, performed on the basis of parameters agreed and approved beforehand in cooperation of MMCI, RECAMO and the manufacturer of said radiopharmaceuticals, aimed to prove the efficiency and suitability of both compounds for oncologic PET diagnostics for said tumors. In both cases, the radiopharmaceuticals were evaluated in regard to their major use.

Conclusion:
The obtained results prove the benefits and efficiency of both compounds in PET diagnostics of respective tumors. The results, in the form of clinical evaluation reports, will be used as part of the documentation required for marketing authorization of these compounds for use in the Czech Republic.

Key words:
positron emission tomography – radiopharmaceuticals – L-methyl-11C-methionine – 18F-fluorocholine

This work was supported by the project MEYS – NPS I – LO1413.

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.

Submitted:
10. 6. 2016

Accepted:
17. 6. 2016


Sources

1. Gallagher BM, Ansari A, Atkins H et al. Radiopharmaceuticals XXVII. 18F-labeled 2-deoxy-2-fluoro-D-glucose as a radiopharmaceuticals for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals. J Nucl Med 1977; 18 (10): 990–996.

2. Schirrmeister H, Kühn T, Guhlmann A et al. Fluorine-18 2-deoxy-2-fluoro-D-glucose PET in the preoperative staging of breast cancer: comparison with the standard staging procedures. Eur J Nucl Med 2001; 28 (3): 351–358.

3. Votrubova J, Belohlavek O, Jaruskova M et al. The role of FDG-PET/CT in the detection of recurrent colorectal cancer. Eur J Nucl Med Mol Imaging 2006; 33 (7): 779–784.

4. Chessin DB, Kiran RP, Akhurst T et al. The emerging role of 18F-fluorodeoxyglucose positron emission tomography in the management of primary and recurrent rectal cancer. J Am Coll Surg 2005; 201 (6): 948–956.

5. Adam J, Andres P, Bolčák K et al. Nová radiofarmaka a aplikace pozitronové emisní tomografie na Masarykově onkologickém ústavu v Brně. Klin Onkol 2009; 22 (3): 94–97.

6. Langen KJ, Jarosch M, Muhlensiepen H et al. Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl Med Biol 2003; 30 (5): 501–508.

7. Saier MH Jr, Daniels GA, Boerner P et al. Neutral amino acid transport systems in animal cells: potential targets of oncogene action and regulators of cellular growth. J Membr Biol 1988; 104 (1): 1–20.

8. Herholz K, Hölzer T, Bauer B et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 1998; 50 (5): 1316–1322.

9. Ceyssens S, van Laere K, de Groot T et al. [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR Am J Neuroradiol 2006; 27 (7): 1432–1437.

10. Singhal T, Narayanan TK, Jacobs MP et al. 11C-methionine PET for grading and prognostication in gliomas: a comparison study with 18F-FDG PET and contrast enhancement on MRI. J Nucl Med 2012; 53 (11): 1709–1715. doi: 10.2967/jnumed.111.102533.

11. Hatakeyama T, Kawai N, Nishiyama Y et al. 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging 2008; 35 (11): 2009–2017. doi: 10.1007/s00259-008-0847-5.

12. Kaschten B, Stevenaert A, Sadzot B et al. Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 1998; 39 (5): 778–785.

13. Ribom D, Eriksson A, Hartman M et al. Positron emission tomography 11C-methionine and survival in patients with low-grade gliomas. Cancer 2001; 92 (6): 1541–1549.

14. van Laere K, Ceyssens S, van Calenbergh F et al. Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 2005; 32 (1): 39–51.

15. Nariai T, Tanaka Y, Wakimoto H et al. Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 2005; 103 (3): 498–507.

16. Ribom D, Engler H, Blomquist E et al. Potential significance of 11C-methionine PET as a marker for the radiosensitivity of low grade gliomas. Eur J Nucl Med 2002; 29 (5): 632–640.

17. Nuutinen J, Sonninen P, Lehikoinen P et al. Radiotherapy treatment planning and long-term follow-up with [11C]methionine PET in patients with low-grade astrocytoma. Int J Radiat Oncol Biol Phys 2000; 48 (1): 43–52.

18. Galldiks N, Kracht LW, Burghaus L et al. Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur J Nucl Med Mol Imaging 2006; 33 (5): 516–524.

19. Tsuyuguchi N, Takami T, Sunada I et al. Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery – in malignant glioma. Ann Nucl Med 2004; 18 (4): 291–296.

20. Terakawa Y, Tsuyuguchi N, Iwai Y et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 2008; 49 (5): 694–699. doi: 10.2967/jnumed.107.048082.

21. Roelcke U, Radü EW, von Ammon K et al. Alteration of blood-brain-barrier in human brain-tumors – comparison of [F-18]fluorodeoxyglucose, [C-11]methionine and Rb-82 using PET. J Neurol Sci 1995; 132 (1): 20–27.

22. Hatakeyama T, Kawai I, Nishiyama Y et al. C-11-methionine (MET) and F-18-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging 2008; 35 (11): 2009–2017. doi: 10.1007/s00259-008-0847-5.

23. Morris MJ, Akhurst T, Osman I et al. Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer. Urology 2002; 59 (6): 913–918.

24. Sanz G, Robles JE, Gimenez M et al. Positron emission tomography with 18fluorine-labelled deoxyglucose: utility in localized and advanced prostate cancer. BJU Int 1999; 84 (9): 1028–1031.

25. Kennedy EP, Weiss SB. The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem 1956; 222 (1): 193–214.

26. Kent C. Regulation of phosphatidylcholine biosynthesis. Prog Lipid Res 1990; 29 (2): 87–105.

27. DeGrado TR, Baldwin SW, Wang S et al. Synthesis and evaluation of (18) F-labeled choline analogs as oncologic PET tracers. J Nucl Med 2001; 42 (12): 1805–1814.

28. Bauman G, Belhocine T, Kovacs M et al. 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis 2012; 15 (1): 45–55. doi: 10.1038/pcan.2011.35.

29. Soyka JD, Muster MA, Schmid DT et al. Clinical impact of 18F-choline PET/CT in patients with recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2012; 39 (6): 936–943. doi: 10.1007/s00259-012-2083-2.

30. Kwee SA, Coel MN, Lim J. Detection of recurrent prostate cancer with 18F-fluorocholine PET/CT in relation to PSA level at the time of imaging. Ann Nucl Med 2012; 26 (6): 501–507. doi: 10.1007/s12149-012-0601-8.

31. Hodolič M. Role of (18) F-choline PET/CT in evaluation of patients with prostate carcinoma. Radiol Oncol 2011; 45 (1): 17–21. doi: 10.2478/v10019-010-0050-8.

32. Fabbri C, Galassi R, Moretti A et al. Radiation dosimetry of 18F-flurocholine PET/CT studies in prostate cancer patients. Phys Med 2014; 30 (3): 346–351. doi: 10.1016/j.ejmp.2013.10.007.

33. Umbehr MH, Müntener M, Hany T et al. The role of 11C-choline and 18F-fluorocholine positron emission tomography (PET) and PET/CT in prostate cancer: a systematic review and meta-analysis. Eur Urol 2013; 64 (1): 106–117. doi: 10.1016/j.eururo.2013.04.019.

34. Quak E, Lheureux S, Reznik Y et al. F18-choline, a novel PET tracer for parathyroid adenoma? J Clin Endocrinol Metab 2013; 98 (8): 3111–3112. doi: 10.1210/jc.2013-2084.

35. Bieze M, Klumpen HJ, Verheij J et al. Diagnostic accuracy of 18F-methyl-choline PET/CT for intra- and extrahepatic hepatocellular carcinoma. Hepatology 2014; 59 (3) : 996– 1006. doi: 10.1002/ hep.26781.

36. GE Healthcare [homepage on the Internet]. Available from: www3.gehealthcare.com.sg .

37. Iba Radiopharma Solutions [homepage on the Internet]. Available from: www.iba-radiopharmasolutions.com .

Labels
Paediatric clinical oncology Surgery Clinical oncology

Article was published in

Clinical Oncology

Issue Supplementum 4

2016 Issue Supplementum 4

Most read in this issue
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#