Genetic Syndromes Predisposing to Tumors of Central Nervous System in Children
Authors:
V. Krutílková
Authors‘ workplace:
Gennet, Centrum lékařské genetiky a reprodukční medicíny, Praha
Published in:
Klin Onkol 2016; 29(Supplementum 1): 71-77
Category:
Review
doi:
https://doi.org/10.14735/amko2016S71
Overview
Background:
The overall incidence of childhood malignancies is rather low. Central nervous system tumours constitute the largest group of solid tumours among children. In contrast to adult population, a genetic predisposition is frequently associated with these malignancies (it is assumed to occur in approximately 15–25% of all childhood tumours) and there is also a number of monogenic hereditary syndromes known to be associated with brain tumours.
Aim:
The purpose of this article is to present an overview of genetic syndromes reported to increase the risk of childhood central nervous system tumours. The outlined tumour predispositions are divided into two groups. Firstly, syndromes with multisystem manifestation, where neoplasia is one of the components, whereas the distinguishing symptom is usually non-oncological. Secondly, there are syndromes that are diagnosed by the associated neoplasm withou any other noticeable phenotypic manifestation. A brief description of particular diseases is provided with a focus on associated central nervous system tumours. Detection of a tumour predisposition in a child is important not only for the child itself, but also for its family relatives. Often, a modification of treatment is necessary in regards to a genetic diagnosis. With the evolution of personalised medicine the possibility of “tailored” therapy will probably be a demanded solution. Last but not least, it is crucial to provide the child with a specialised preventive care owing to the risk of another potential malignancy. The diagnosis of hereditary cancer predisposition has also a big impact on the relatives of the patient. It enables to specify their oncological risk and arrange a specialised preventive care program, if needed. For high-risk parents planning another pregnancy there is a possibility to prevent the transfer of a certain disposition with the aid of preimplantation and prenatal genetic testing.
Key words:
brain tumours – child – hereditary cancer syndromes
The authors declare she has no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.
Submitted:
15. 7. 2015
Accepted:
26. 8. 2015
Sources
1. Bleeker FE, Hopman SM, Merks JH et al. Brain tumors and syndromes in children. Neuropediatrics 2014; 45(3): 137– 161. doi: 10.1055/ s‑ 0034‑ 1368116.
2. Villani A, Malkin D, Tabori U. Syndromes predisposing to pediatric central nervous system tumors: lessons learned and new promises. Curr Neurol Neurosci Rep 2012; 12(2): 153– 164. doi: 10.1007/ s11910‑ 011‑ 0244‑ 5.
3. Villavicencio EH, Walterhouse DO, Iannaccone PM. The sonic hedgehog‑ patched‑ gli pathway in human development and disease. Am J Hum Genet 2000; 67(5): 1047– 1054.
4. Poduri A, Evrony GD, Cai X et al. Somatic mutation, genomic variation, and neurological disease. Science 2013; 341(6141): 1237758. doi: 10.1126/ science.1237758.
5. Petrák B, Plevová P, Novotný J et al. Neurfibromatosis von recklinghausen. Klin Onkol 2009; 22 (Suppl): S38– S44.
6. Plevová P, Krutílková V, Puchmajerová A, et al. Gorlinův syndrom. Klin Onkol 2009; 22 (Suppl): S34– S35.
7. Amlashi SF, Riffaud L, Brassier G et al. Nevoid basal cell carcinoma syndrome: relation with desmoplastic medulloblastoma in infancy. A population‑based study and review of the literature. Cancer 2003; 98(3): 618– 624.
8. Choudry Q, Patel HC, Gurusinghe NT et al. Radiation‑induced brain tumors in nevoid basal cell carcinoma syndrome: implications for treatment and surveillance. Child Nerv Syst 2007; 23(1): 133– 136.
9. Foretová L, Macháčková E, Gaillyová R et al. Hereditární nádorová onemocnění. In: Foretová L, Svoboda M, Slabý Oet al (eds). Molekulární genetika v onkologii. 1. vyd. Praha: Mladá fronta 2014.
10. Vrtěl R, Filipová H, Vodička R et al. Tuberózní skleróza. Klin Onkol 2009; 22 (Suppl): S50– S53.
11. Meyer S, Tischkowitz M, Chandler K et al. Fanconi anaemia, BRCA2 mutations and childhood cancer: a developmental perspective from clinical and epidemiological observations with implications for genetic counselling. J Med Genet 2014; 51(2): 71– 75. doi: 10.1136/ jmedgenet‑ 2013‑ 101642.
12. Tischkowitz M, Xia B. PALB2/ FANCN – recombining cancer and Fanconi anemia. Cancer Res 2010; 70(19): 7353– 7359. doi: 10.1158/ 0008– 5472.CAN‑ 10- 1012.
13. Roelfsema JH, Peters DJ. Rubinstein‑Taybi syndrome: clinical and molecular overview. Expert Rev Mol Med 2007; 9(23): 1– 16.
14. Bourdeaut F, Miquel C, Richer W et al. Rubinstein‑Taybi syndrome predisposing to non‑WNT, non‑SHH, group 3medulloblastoma. Pediatr Blood Cancer 2014; 61(2): 383– 386. doi: 10.1002/ pbc.24765.
15. Pollard JM, Gatti RA. Clinical radiation sensitivity with DNA repair disorders: an overview. Int J Radiat Oncol Biol Phys 2009; 74(5): 1323– 1331. doi: 10.1016/ j.ijrobp.2009.02.057.
16. Gonzales KD, Buzin CH, Noktner KA et al. High frequency of de novo mutations in Li‑ Fraumeni syndrome: impact on age at first diagnosis. J Med Genet 2009; 46(10): 686– 693. doi: 10.1136/ jmg.2008.058958.
17. Tinat J, Bougeard L, Ronsin M et al. 2009 version of the Chompret criteria for Li‑ Fraumeni syndrome. J Clin Oncol 2009; 27(26): e108– e109. doi: 10.1200/ JCO.2009.22.7967.
18. Gozali AE, Britt B, Shane L et al. Choroid plexus tumors; management, outcome, and association with the Li‑ Fraumeni syndrome: the Children’s Hospital Los Angeles (CHLA) experience, 1991– 2010. Pediatr Blood Cancer 2012; 58(6): 905– 909. doi: 10.1002/ pbc.23349.
19. Krutílková V, Trková M, Fleitz J et al. Identification of five families strengthens the link between childhood choroid plexus carcinoma and germline TP53 mutations. Eur J Cancer 2005; 41(11): 1597– 1603.
20. Vasen HF, Ghorbanoghli Z, Bourdeaut F et al. Guidelines for surveillance of individuals with constitutional mismatch repair‑ deficiency proposed by the European Consortium „Care for CMmR‑ D“(C4CMmR‑ D). J Med Genet 2014; 51(5): 283– 293. doi: 10.1136/ jmedgenet‑ 2013‑ 102238.
21. Half E, Bercovich D, Rozen P. Familial adenomatous polyposis. Orphanet J Rare Dis 2009; 4: 22. doi: 10.1186- 1750- 1172- 4- 22.
22. Sun S, Liu AJ. Long/ term follow‑up studies of Gamma Knife surgery for patients with neurofibromatosis type 2. Neurosurg 2014; 121 (Suppl): 143– 149. doi: 10.3171/ 2014.8.GKS141503.
23. Bruggers CS, Bleyl SB, Pysher T et al. Clinicopathologic comparison of familial versus sporadic atypical teratoid/ rhabdoid tumors (AT/ RT) of the central nervous system. Pediatr Blood Cancer 2011; 56(7): 1026– 1031. doi:10.1002/ ppbc.22757.
24. Kanno H, Kuratsu J, Nishikawa R et al. Clinical features of patients bearing central nervous system hemangioblastoma in von Hippel‑ Lindau disease. Acta Neurochir (Wien) 2013; 155(1): 1– 7. doi: 10.1007/ s00701‑ 012‑ 1514‑ y.
25. Scheinemann K, Bouffet E (eds). Pediatric neuro‑on-cology. New York: Springer‑ Verlag 2015.
26. Schiffman JD, Geller JI, Mundt E et al. Update on pediatric cancer predisposition syndromes. Pediatr Blood Cancer 2013; 60(8): 1247– 1252. doi: 10.1002/ pbc.24555.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology
2016 Issue Supplementum 1
Most read in this issue
- PALB2 as Another Candidate Gene for Genetic Testing in Patients with Hereditary Breast Cancer in Czech Republic
- Hepatoblastoma, Etiology, Case Reports
- Genetics of Colorectal Tumorigenesis (Possibilities of Testing and Screening Prediction of Hereditary Form of Colorectal Cancer – Lynch Syndrome)
- Fanconi Anemia, Complementation Group D1 Caused by Biallelic Mutations of BRCA2 Gene – Case Report