‘Sugars Interfere’ or Glycomics in the Field of Cancer Biomarkers
Authors:
M. Zahradníková; B. Vojtěšek; L. Hernychová
Authors‘ workplace:
Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno
Published in:
Klin Onkol 2015; 28(Supplementum 2): 20-25
doi:
https://doi.org/10.14735/amko20152S20
Overview
Glycomics is concerned with detection and characterization of glycans present in biological samples. It is well‑known that glycan structures impart high degree of structural diversity to biomolecules and thus add wide‑ ranging biological functions, such as cellular recognition, adhesion or involvement in cellular signaling pathways. They substantially participate in oncogenesis, e. g. in phases of invasion, metastasis and angiogenesis. Therefore, analysis of glycan structures in tumor tissues or body liquids is a promising tool for searching for potential tumor biomarkers essential for an early diagnosis of the neoplastic disease. The presented review describes the process of glycosylation and the origination of N and O glycans, presenting examples of glycan profiling in pancreatic, prostate and ovarian cancer.
Key words:
glycomics – tumor biomarker – pancreatic cancer – prostate cancer – ovarian cancer
This study was supported by IGA MH CR NT/13794-4/2012, by the European Regional Development Fund and the State Budget of the Czech Republic (RECAMO, CZ.1.05/2.1.00/03.0101), MEYS – NPS I – LO1413, by MH CZ – DRO (MMCI, 00209805) and by BBMRI_CZ (LM2010004).
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Submitted:
10. 4. 2015
Accepted:
25. 6. 2015
Sources
1. Linkos.cz [internetová stránka]. Česká onkologická společnost ČLS JEP, Česká republika; c2000– 15 [aktualizováno 3. března 2015; citováno 5. března 2015]. Dostupné z:http:/ / www.linkos.cz.
2. Uzis.cz [internetová stránka]. Ústav zdravotnických informací a statisty ČR (ÚZIS), Česká republika, [citováno 5. března 2015]. Dostupné z: http:/ / uzis.cz/ publikace/ novotvary‑ 2010.
3. Gutman S, Kessler LG. The US Food and Drug Administration perspective on cancer biomarker development. Nat Rev Cancer 2006; 6(7): 565– 571.
4. Mishra A, Verma M. Cancer biomarkers: are we ready for the prime time? Cancers 2010; 2(1): 190– 208. doi: 10.3390/ cancers2010190.
5. Srivastava S. Move over proteomics, here comes glycomics. J Proteome Res 2008; 7(5): 1799.
6. Werz DB, Ranziger R, Herget S et al. Exploring the structural diversity of mammalian carbohydrates („glycospace“) by statistical databank analysis. ACS Chem Biol 2007; 2(10): 685– 691.
7. Lin Z, Simeone DM, Anderson MA et al. Mass spectrometric assay for analysis of haptoglobin fucosylation in pancreatic cancer. J Proteome Res 2011; 10(5): 2602– 2611. doi: 10.1021/ pr200102h.
8. Takeda Y, Shinzaki S, Okudo K et al. Fucosylated haptoglobin is a novel type of cancer biomarker linked to the prognosis after an operation in colorectal cancer. Cancer 2012; 118(12): 3036– 3043. doi: 10.1002/ cncr.26490.
9. Zhao YP, Ruan CP, Wang H et al. Identification and assessment of new biomarkers for colorectal cancer with serum N‑ glycan profiling. Cancer 2012; 118(3): 639– 650. doi: 10.1002/ cncr.26342.
10. Saldova R, Fan Y, Fitzpatrick JM et al. Core fucosylation and alpha2– 3 sialylation in serum N‑ glycome is significantly increased in prostate cancer comparing to benign prostate hyperplasia. Glycobiology 2011; 21(2): 195– 205. doi: 10.1093/ glycob/ cwq147.
11. Saldova R, Piccard H, Pérez‑ Garay M et al. Increase in sialylation and branching in the mouse serum N‑ glycome correlates with inflammation and ovarian tumour progression. PloS One 2013; 8(8): e71159. doi: 10.1371/ journal.pone.0071159.
12. Stanley P, Schachter H, Taniguchi N. N‑ Glycans. In: Varki A, Cummings RD, Esko JD et al (eds). Essentials of glycobiology. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press 2009: 101– 114.
13. Freeze HH, Eklund EA, Ng BG et al. Neurology of inherited glycosylation disorders. Lancet Neurol 2012; 11(5): 453– 466. doi: 10.1016/ S1474‑ 4422(12)70040‑ 6.
14. Hennet T. Diseases of glycosylation beyond classical congenital disorders of glycosylation. Biochim Biophys Acta 2012; 1820(9): 1306– 1317. doi: 10.1016/ j.bbagen.2012.02.001.
15. Freeze HH, Haltiwanger RS. Other classes of ER/ Golgi‑ derived glycans. In: Varki A, Cummings RD, Esko JD et al (eds). Essentials of glycobiology. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press 2009: 163– 173.
16. Stanley P, Cummings RD. Structures common to different glycans. In: Varki A, Cummings RD, Esko JD et al (eds). Essentials of glycobiology. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press 2009: 175– 198.
17. Mechref Y, Hu Y, Garcia A et al. Defining putative glycan cancer biomarkers by MS. Bioanalysis 2012; 4(20): 2457– 2469. doi: 10.4155/ bio.12.246.
18. Cylwik B, Lipartowska K, Chrostek L et al. Congenital disorders of glycosylation. Part II. Defects of protein O‑ glycosylation. Acta biochimica Polonica 2013; 60(3): 361– 368.
19. Brockhausen I, Schachter H, Stanley P. O‑ GalNAc glycans. In: Varki A, Cummings RD, Esko JD et al (eds). Essentials of glycobiology. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press 2009: 115– 127.
20. Spiro RG. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 2002; 12(4): 43R– 56R.
21. Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS‑ PROT database. Biochim Biophys Acta 1999; 1473(1): 4– 8.
22. Drake PM, Cho W, Li B et al. Sweetening the pot: adding glycosylation to the biomarker discovery equation. Clin Chem 2010; 56(2): 223– 236. doi: 10.1373/ clinchem.2009.136333.
23. Taniguchi N, Kizuka Y. Glycans and cancer: role of N‑ glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv Cancer Res 2015; 126: 11– 51. doi: 10.1016/ bs.acr.2014.11.001.
24. Li DH, Xie KP, Wolff R et al. Pancreatic cancer. Lancet 2004; 363(9414): 1049– 1057.
25. Azeem K, Ševčíková J, Tomášková H et al. Karcinom pankreatu a faktory životního stylu. Klin Onkol 2013; 26(4): 257–262. doi: 10.14735/amko2013257.
26. Mann BF, Goetz JA, House MG et al. Glycomic and proteomic profiling of pancreatic cyst fluids identifies hyperfucosylated lactosamines on the N‑linked glycans of over expressed glycoproteins. Mol Cell Proteomics 2012; 11(7): M111.015792. doi: 10.1074/ mcp.M111.015792.
27. Ondrušová M, Mužík J, Kliment J et al. Incidencia a mortalita na karcinóm prostaty vo vybraných krajinách strednej Európy. Klin Onkol 2011; 24(2): 126– 132.
28. Štern P, Vranovský K, Šafarčík K. Karcinom prostaty – molekulární podstata, diagnostika a ekonomika prevence. Klin Biochem Metab 2008; 16(37): 19– 26.
29. Kyselova Z, Mechref Y, Al Bataineh MM et al. Alterations in the serum glycome due to metastatic prostate cancer. J Proteome Res 2007; 6(5): 1822– 1832.
30. Ayhan A, Guven S, Kucukali T. Is there a correlation Bergen tomur marker panel and tumor size and histopathology in well stages patiens with bordeline ovarian tumors? Acta Obstet Gynecol Stand 2007; 86(4): 484– 490.
31. Urban P, Bilecová‑ Rabajdová M, Štefeková Z et al. Prehľad potenciálnych onkomarkerov detekcie skorých fáz rakoviny vaječníkov. Klin Onkol 2011; 24(2): 106– 111.
32. Alley WR, Vasseur JA, Goetz JA et al. N‑linked glycan structures and their expressions change in the blood sera of ovarian cancer patients. J Proteome Res 2012; 11(4): 2282– 2300. doi: 10.1021/ pr201070k.
33. Tarentino AL, Plummer TH. Enzymatic deglycosylation of asparagine‑linked glycans: purification, properties, and specificity of oligosaccharide‑ cleaving enzymes from Flavobacterium meningosepticum. Methods Enzymol 1994; 230: 44– 57.
34. Jensen PH, Karlsson NG, Kolarich D et al. Structural analysis of N‑ and O‑ glycans released from glycoproteins. Nature Protocols 2012; 7(7): 1299– 1310. doi: 10.1038/ nprot.2012.063.
35. Zahradníková M, Hernychová L, Vojtěšek B et al. Nové trendy ve studiu glykosylace proteinů u onkologických onemocnění. Klin Onkol 2014; 27 (Suppl 1): S121–S129. doi: 10.14735/amko2014S121.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology
2015 Issue Supplementum 2
Most read in this issue
- Adenoviral Vectors in Gene Therapy
- Nrf2 – Two Faces of Antioxidant System Regulation
- Recombinant Antibodies and Their Employment in Cancer Therapy
- What Can Study of Oligomerization of Proteinsin the Process of Oncogenesis Bring Us?