The Role of MicroRNAs in the Pathophysiology of Neuroblastoma and Their Possible Use in Diagnosis, Prognosis and Therapy
Authors:
J. Vinklárek 1; J. Novák 1,2; J. Bienertová-Vašků 1,3,4; J. Štěrba 3; O. Slabý 4
Authors‘ workplace:
Ústav patologické fyziologie, LF MU, Brno
1; Fyziologický ústav, LF MU, Brno
2; Klinika dětské onkologie LF MU a FN Brno
3; Molekulární onkologie II, CEITEC – Středoevropský technologický institut, MU, Brno
4
Published in:
Klin Onkol 2014; 27(5): 331-339
Category:
Reviews
doi:
https://doi.org/10.14735/amko2014331
Overview
Neuroblastoma (NBL) is a typical childhood tumor developing from the precursor cells of the sympathetic nervous tissue and accounting for approximately 7% of total malignancies in pediatrics and 15% of deaths associated with this malignancy. MicroRNAs (miRNAs) are small single-stranded RNA molecules that are involved in posttranscriptional regulation of gene expression, whereas the pathophysiology of neuroblastoma tumor growth involves both upregulation of the protooncogenic miRNAs as well as downregulation of the tumor-suppresor ones. Comparison of the expression profiles of miRNAs in specific subtypes of neuroblastoma seems to be a useful tool adding to the classification of the diseases, and the assessment of the levels of specific miRNAs may be useful for estimation of the individual treatment response as well as prognosis of the patient. This paper provides the basic review of the studies focused on the role of miRNAs in pathogenesis of neuroblastoma and provides a survey of current/ possible use of these miRNAs in diagnostics, therapy or prognosis estimation in the neuroblastoma patients.
Key words:
neuroblastoma – microRNA – diagnosis – therapy – prognosis
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Submitted:
15. 10. 2013
Accepted:
1. 9. 2014
Sources
1. Chen Y, Stallings RL. Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res 2007; 67(3): 976– 983.
2. Maris JM, Hogarty MD, Bagatell R et al. Neuroblastoma. Lancet 2007; 369(9579): 2106– 2120.
3. Haug BH, Henriksen JR, Buechner J et al. MYCN-regulated miRNA-92 inhibits secretion of the tumor suppressor DICKKOPF-3 (DKK3) in neuroblastoma. Carcinogenesis 2011; 32(7): 1005– 1012. doi: 10.1093/ carcin/ bgr073.
4. Hulf T, Sibbritt T, Wiklund ED et al. Discovery pipeline for epigenetically deregulated miRNAs in cancer: integration of primary miRNA transcription. BMC Genomics 2011; 12: 54. doi: 10.1186/ 1471-2164-12-54.
5. Lee EJ, Baek M, Gusev Y et al. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA 2008; 14(1): 35– 42.
6. Lee Y, Kim M, Han J et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23(20): 4051– 4060.
7. Zhou X, Ruan J, Wang G et al. Characterization and identification of microRNA core promoters in four model species. PLoS Comput Biol 2007; 3(3): e37.
8. Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 2010; 38(3): 323– 332. doi: 10.1016/ j.molcel.2010.03.013.
9. Murchison EP, Hannon GJ. MiRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol 2004; 16(3): 223– 229.
10. Lund E, Dahlberg JE. Substrate selectivity of exportin 5and Dicer in the biogenesis of microRNAs. Cold Spring Harb Symp Quant Biol 2006; 71: 59– 66.
11. Schulte JH, Horn S, Otto T et al. MYCN regulates oncogenic MicroRNAs in neuroblastoma. Int J Cancer 2008; 122(3): 699– 704.
12. Fontana L, Fiori ME, Albini S et al. Antagomir-17- 5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS One 2008; 3(5): e2236. doi: 10.1371/ journal.pone.0002236.
13. Dews M, Homayouni A, Yu D et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 2006; 38(9): 1060– 1065.
14. O‘Donnell KA, Wentzel EA, Zeller KI et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435(7043): 839– 843.
15. Cole KA, Attiyeh EF, Mosse YP et al. A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 2008; 6(5): 735– 742. doi: 10.1158/ 1541-7786.MCR-07-2102.
16. Chang TC, Wentzel EA, Kent OA et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26(5): 745– 752.
17. He L, He X, Lim LP et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447(7148): 1130– 1134.
18. Raver-Shapira N, Marciano E, Meiri E et al. Transcriptional activation of miR-34a contributes to p53- mediated apoptosis. Mol Cell 2007; 26(5): 731– 743.
19. Tarasov V, Jung P, Verdoodt B et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1- arrest. Cell Cycle 2007; 6(13): 1586– 1593.
20. Hosoi G, Hara J, Okamura T et al. Low frequency of the p53 gene mutations in neuroblastoma. Cancer 1994; 73(12): 3087– 3093.
21. Deyell RJ, Attiyeh EF. Advances in the understanding of constitutional and somatic genomic alterations in neuroblastoma. Cancer Genet 2011; 204(3): 113– 121. doi: 10.1016/ j.cancergen.2011.03.001.
22. Stanton BR, Perkins AS, Tessarollo L et al. Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. Genes Dev 1992; 6(12A): 2235– 2247.
23. Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Cancer 2008; 8(12): 976– 990. doi: 10.1038/ nrc2231.
24. Buechner J, Einvik C. N-myc and noncoding RNAs in neuroblastoma. Mol Cancer Res 2012; 10(10): 1243– 1253. doi: 10.1158/ 1541-7786.MCR-12-0244.
25. Delaloy C, Liu L, Lee JA et al. MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell 2010; 6(4): 323– 335. doi: 10.1016/ j.stem.2010.02.015.
26. Buckley PG, Alcock L, Bryan K et al. Chromosomal and microRNA expression patterns reveal biologically distinct subgroups of 11q- neuroblastoma. Clin Cancer Res 2010; 16(11): 2971–2978. doi: 10.1158/1078-0432.CCR-09-3215.
27. Bray I, Bryan K, Prenter S et al. Widespread dysregulation of MiRNAs by MYCN amplification and chromosomal imbalances in neuroblastoma: association of miRNA expression with survival. PLoS One 2009; 4(11): e7850. doi: 10.1371/ journal.pone.0007850.
28. Schulte JH, Marschall T, Martin M et al. Deep sequencing reveals differential expression of microRNAs in favorable versus unfavorable neuroblastoma. Nucleic Acids Res 2010; 38(17): 5919– 5928. doi: 10.1093/ nar/ gkq342.
29. Bray I, Tivnan A, Bryan K et al. MicroRNA-542- 5p as a novel tumor suppressor in neuroblastoma. Cancer Lett 2011; 303(1): 56– 64. doi: 10.1016/ j.canlet.2011.01.016.
30. Schulte JH, Schowe B, Mestdagh P et al. Accurate prediction of neuroblastoma outcome based on miRNA expression profiles. Int J Cancer 2010; 127(10): 2374– 2385. doi: 10.1002/ ijc.25436.
31. Lin RJ, Lin YC, Chen J et al. microRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma. Cancer Res 2010; 70(20): 7841– 7850. doi: 10.1158/ 0008-5472.CAN-10-0970.
32. Wei JS, Song YK, Durinck S et al. The MYCN oncogene is a direct target of miR-34a. Oncogene 2008; 27(39): 5204– 5213. doi: 10.1038/ onc.2008.154.
33. Buechner J, Henriksen JR, Haug BH et al. Inhibition of mir-21, which is up-regulated during MYCN knockdown-mediated differentiation, does not prevent differentiation of neuroblastoma cells. Differentiation 2011; 81(1): 25– 34. doi: 10.1016/ j.diff.2010.09.184.
34. Das S, Foley N, Bryan K et al. MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation. Cancer Res 2010; 70(20): 7874– 7881. doi: 10.1158/ 0008-5472.CAN-10-1534.
35. Foley NH, Bray I, Watters KM et al. MicroRNAs 10a and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2. Cell Death Differ 2011; 18(7): 1089– 1098. doi: 10.1038/ cdd.2010.172.
36. Fukuda Y, Kawasaki H, Taira K. Exploration of human miRNA target genes in neuronal differentiation. Nucleic Acids Symp Ser (Oxf) 2005; 49: 341– 342.
37. Buechner J, Tomte E, Haug BH et al. Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. Br J Cancer 2011; 105(2): 296– 303. doi: 10.1038/ bjc.2011.220.
38. Vermeulen J, De Preter K, Naranjo A et al. Predicting outcomes for children with neuroblastoma using a multigene-expression signature: a retrospective SIOPEN/ COG/ GPOH study. Lancet Oncol 2009; 10(7): 663– 671. doi: 10.1016/ S1470-2045(09)70154-8.
39. Nakagawara A, Arima M, Azar CG et al. Inverse relationship between trk expression and N-myc amplification in human neuroblastomas. Cancer Res 1992; 52(5): 1364– 1368.
40. Nakagawara A, Arima-Nakagawara M, Scavarda NJ et al.Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 1993; 328(12): 847– 854.
41. Kogner P, Barbany G, Dominici C et al. Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. Cancer Res 1993; 53(9): 2044– 2050.
42. Suzuki T, Bogenmann E, Shimada H et al. Lack of high-affinity nerve growth factor receptors in aggressive neuroblastomas. J Natl Cancer Inst 1993; 85(5): 377– 384.
43. Nakagawara A, Azar CG, Scavarda NJ et al. Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 1994; 14(1): 759– 767.
44. Ryan J, Tivnan A, Fay J et al. MicroRNA-204 increases sensitivity of neuroblastoma cells to cisplatin and is associated with a favourable clinical outcome. Br J Cancer 2012; 107(6): 967– 976. doi: 10.1038/ bjc.2012.356.
45. Ho R, Eggert A, Hishiki T et al. Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res 2002; 62(22): 6462– 6466.
46. Jaboin J, Hong A, Kim CJ et al. Cisplatin-induced cytotoxicity is blocked by brain-derived neurotrophic factor activation of TrkB signal transduction path in neuroblastoma. Cancer Lett 2003; 193(1): 109– 114.
47. Yamashiro DJ, Nakagawara A, Ikegaki N et al. Expression of TrkC in favorable human neuroblastomas. Oncogene 1996; 12(1): 37– 41.
48. Ryden M, Sehgal R, Dominici C et al. Expression of mRNA for the neurotrophin receptor trkC in neuroblastomas with favourable tumour stage and good prognosis. Br J Cancer 1996; 74(5): 773– 779.
49. Guidi M, Muinos-Gimeno M, Kagerbauer B et al. Overexpression of miR-128 specifically inhibits the truncated isoform of NTRK3 and upregulates BCL2 in SH-SY5Y neuroblastoma cells. BMC Mol Biol 2010; 11: 95. doi: 10.1186/ 1471-2199-11-95.
50. Shimada H, Umehara S, Monobe Y et al. International neuroblastoma pathology classification for prognostic evaluation of patients with peripheral neuroblastic tumors: a report from the Children‘s Cancer Group. Cancer 2001; 92(9): 2451– 2461.
51. Beveridge NJ, Tooney PA, Carroll AP et al. Down-regulation of miR-17 family expression in response to retinoic acid induced neuronal differentiation. Cell Signal 2009; 21(12): 1837– 1845. doi: 10.1016/ j.cellsig.2009.07.019.
52. Meseguer S, Mudduluru G, Escamilla JM et al. MicroRNAs-10a and - 10b contribute to retinoic acid-induced differentiation of neuroblastoma cells and target the alternative splicing regulatory factor SFRS1 (SF2/ ASF). J Biol Chem 2011; 286(6): 4150– 4164. doi: 10.1074/ jbc.M110.167817.
53. Noy N. Between death and survival: retinoic acid in regulation of apoptosis. Annu Rev Nutr 2010; 30: 201– 217. doi: 10.1146/ annurev.nutr.28.061807.155509.
54. Abemayor E, Sidell N. Human neuroblastoma cell lines as models for the in vitro study of neoplastic and neuronal cell differentiation. Environ Health Perspect 1989; 80: 3– 15.
55. Thiele CJ, Reynolds CP, Israel MA. Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature 1985; 313(6001): 404– 406.
56. Mestdagh P, Fredlund E, Pattyn F et al. MYCN/ c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/ c-MYC-activated tumors. Oncogene 2010; 29(9): 1394– 1404. doi: 10.1038/ onc.2009.429.
57. Laneve P, Di Marcotullio L, Gioia U et al. The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. Proc Natl Acad Sci U S A 2007; 104(19): 7957– 7962.
58. Thiele CJ, Israel MA. Regulation of N-myc expression is a critical event controlling the ability of human neuroblasts to differentiate. Exp Cell Biol 1988; 56(6): 321– 333.
59. Childrensoncologygroup.org [homepage on the Internet]. Children’s Oncology Group. Available from: http:/ / www.childrensoncologygroup.org/ index.php/ neuroblastoma/ 197.
60. Davidoff AM. Neuroblastoma. Semin Pediatr Surg 2012; 21(1): 2– 14. doi: 10.1053/ j.sempedsurg.2011.10.009.
61. Brodeur GM, Seeger RC, Schwab M et al. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 1984; 224(4653): 1121– 1124.
62. Attiyeh EF, London WB, Mosse YP et al. Chromosome 1p and 11q deletions and outcome in neuroblastoma. N Engl J Med 2005; 353(21): 2243– 2253.
63. Volinia S, Calin GA, Liu CG et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006; 103(7): 2257– 2261.
64. Ciafre SA, Galardi S, Mangiola A et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 2005; 334(4): 1351– 1358.
65. Slabý O, Svoboda M (eds). MikroRNA v onkologii. 1. vyd. Praha: Galén 2012.
66. Calin GA, Croce CM. Chromosomal rearrangements and microRNAs: a new cancer link with clinical implications. J Clin Invest 2007; 117(8): 2059– 2066.
67. Stenvang J, Silahtaroglu AN, Lindow M et al. The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol 2008; 18(2): 89– 102. doi: 10.1016/ j.semcancer.2008.01.004.
68. Swarbrick A, Woods SL, Shaw A et al. miR-380- 5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplified neuroblastoma. Nat Med 2010; 16(10): 1134– 1140. doi: 10.1038/ nm.2227.
69. Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 2010; 9(10): 775– 789. doi: 10.1038/ nrd3179.
70. Bader AG, Brown D, Stoudemire J et al. Developing therapeutic microRNAs for cancer. Gene Ther 2011; 18(12): 1121– 1126. doi: 10.1038/ gt.2011.79.
71. Ritter G, Livingston PO. Ganglioside antigens expressed by human cancer cells. Semin Cancer Biol 1991; 2(6): 401– 409.
72. Wu ZL, Schwartz E, Seeger R et al. Expression of GD2 ganglioside by untreated primary human neuroblastomas. Cancer Res 1986; 46(1): 440– 443.
73. Handgretinger R, Anderson K, Lang P et al. A phase I study of human/ mouse chimeric antiganglioside GD2 antibody ch14.18 in patients with neuroblastoma. Eur J Cancer 1995; 31A(2): 261– 267.
74. Yu AL, Uttenreuther-Fischer MM, Huang CS et al. Phase Itrial of a human-mouse chimeric anti-disialoganglioside monoclonal antibody ch14.18 in patients with refractory neuroblastoma and osteosarcoma. J Clin Oncol 1998; 16(6): 2169– 2180.
75. Zeytin HE, Tripathi PK, Bhattacharya-Chatterjee M et al. Construction and characterization of DNA vaccines encoding the single-chain variable fragment of the anti-idiotype antibody 1A7 mimicking the tumor-associated antigen disialoganglioside GD2. Cancer Gene Ther 2000; 7(11): 1426– 1436.
76. Lode HN, Xiang R, Varki NM et al. Targeted interleukin-2 therapy for spontaneous neuroblastoma metastases to bone marrow. J Natl Cancer Inst 1997; 89(21): 1586– 1594.
77. Tivnan A, Orr WS, Gubala V et al. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS One 2012; 7(5): e38129. doi: 10.1371/ journal.pone.0038129.
78. Wallace MS, Lee J, Sorkin L et al. Intravenous lidocaine: effects on controlling pain after anti-GD2 antibody therapy in children with neuroblastoma – a report of a series. Anesth Analg 1997; 85(4): 794– 796.
79. Lee JJ, Drakaki A, Iliopoulos D et al. MiR-27b targets PPARgamma to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells. Oncogene 2012; 31(33): 3818– 3825. doi: 10.1038/ onc.2011.543.
80. Chung SW, Kang BY, Kim SH et al. Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-gamma and nuclear factor-kappa B. J Biol Chem 2000; 275(42): 32681– 32687.
81. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001; 357(9255): 539– 545.
82. Karin M. Nuclear factor-kappaB in cancer development and progression. Nature 2006; 441(7092): 431– 436.
83. Naugler WE, Karin M. NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev 2008; 18(1): 19– 26. doi: 10.1016/ j.gde.2008.01.020.
84. Chen H, Shalom-Feuerstein R, Riley J et al. miR-7 and miR-214 are specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem cells differentiation, and control neurite outgrowth in vitro. Biochem Biophys Res Commun 2010; 394(4): 921– 927. doi: 10.1016/ j.bbrc.2010.03.076.
85. Lovén J, Zinin N, Wahlstrom T et al. MYCN-regulated microRNAs repress estrogen receptor-alpha (ESR1) expression and neuronal differentiation in human neuroblastoma. Proc Natl Acad Sci U S A 2010; 107(4): 1553– 1558. doi: 10.1073/ pnas.0913517107.
86. Makeyev EV, Zhang J, Carrasco MA et al. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 2007; 27(3): 435– 448.
87. Evangelisti C, Florian MC, Massimi I et al. MiR-128 up-regulation inhibits Reelin and DCX expression and reduces neuroblastoma cell motility and invasiveness. FASEB J 2009; 23(12): 4276– 4287. doi: 10.1096/ fj.09-134965.
88. Le MT, Xie H, Zhou B et al. MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol Cell Biol 2009; 29(19): 5290– 5305. doi: 10.1128/ MCB.01694-08.
89. Foley NH, Bray IM, Tivnan A et al. MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/ threonine kinase AKT2. Mol Cancer 2010; 9: 83. doi: 10.1186/ 1476-4598-9-83.
90. Khew-Goodall Y, Goodall GJ. Myc-modulated miR-9 makes more metastases. Nat Cell Biol 2010; 12(3): 209– 211. doi: 10.1038/ ncb0310-209.
91. Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 2007; 26(34): 5017– 5022.
92. Mestdagh P, Bostrom AK, Impens F et al. The miR-17-92 microRNA cluster regulates multiple components of the TGF-beta pathway in neuroblastoma. Mol Cell 2010; 40(5): 762– 773. doi: 10.1016/ j.molcel.2010.11.038.
93. Ragusa M, Majorana A, Banelli B et al. MIR152, MIR200B, and MIR338, human positional and functional neuroblastoma candidates, are involved in neuroblast differentiation and apoptosis. J Mol Med (Berl) 2010; 88(10): 1041– 1053. doi: 10.1007/ s00109-010-0643-0.
94. Tivnan A, Foley NH, Tracey L et al. MicroRNA-184- mediated inhibition of tumour growth in an orthotopic murine model of neuroblastoma. Anticancer Res 2010; 30(11): 4391– 4395.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology
2014 Issue 5
Most read in this issue
- Prognostic Markers of Advanced Non-small Cell Lung Carcinoma – Assessing the Significance of Oncomarkers Using Data-mining Techiques RPA
- Breast Cancer Patient Satisfaction with Immediate Two-stage Implant-based Breast Reconstruction
- Cereblon – a New Target of Therapy in the Treatment of Multiple Myeloma
- Function of CDK12 in Tumor Initiation and Progression and Its Clinical Consequences