Agressive Fibromatosis: Genetic and Biological Correlations
Authors:
Z. Hlavatá; Š. Porsok
Authors‘ workplace:
Oddelenie klinickej onkológie, Národný onkologický ústav, Bratislava, Slovenská republika
Published in:
Klin Onkol 2012; 25(2): 85-90
Category:
Reviews
Overview
Aggressive fibromatosis, also known as desmoid tumor, is specific and relatively rarely occuring disease. It belongs to heterogenous group of soft tissue tumors. Originally, it arises from fibroblasts with monoclonal proliferation derived from fibro-aponeurotic tissue with typical local invasive spreading without metastatic tendency. Increased amount of knowledge about the role of the APC gene and its protein product in FAP play an important role in revealing the molecular nature of desmoid tumors. In general, we can conclude that the β-catenin dysregulation is the key player of the FAP associated desmoid tumor onset. The Wingless/Wnt cascade plays a crucial role in the pathogenesis of aggressive fibromatosis. However, it has not been definitely proven that the mutations of APC or β-catenin genes are the trigger mechanisms. The research outcome can pave the way for using target biological therapy in routine practice in patients with aggressive fibromatosis in the future.
Key words:
aggressive fibromatosis – desmoid – familial adenomatous polyposis – genotype-phenotype correlations
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Submitted:
16. 8. 2011
Accepted:
19. 2. 2012
Sources
1. DeVita VT Jr, Hellman S, Rosenberg SA. Cancer. Principles and practice of oncology. 8th ed. Philadelphia: Lippincott Williams & Wilkins 2008.
2. Clark SK, Neale KF, Landgrebe JC et al. Desmoid tumours complicating familial adenomatous polyposis. Br J Surg 1999; 86(9): 1185–1189.
3. Nuyttens JJ, Rust PF, Thomas CR Jr et al. Surgery versus radiation therapy for patients with aggressive fibromatosis or desmoid tumors: a comparative review of 22 articles. Cancer 2000; 88(7):1517–1523.
4. Bertario L, Russo A, Sala P et al. Genotype and phenotype factors as determinants of desmoid tumors in patients with familial adenomatous polyposis. Int J Cancer 2001; 95(2): 102–107.
5. Gardner EJ, Stephens FE. Cancer of the lower digestive tract in one family group. Am J Hum Genet 1950; 2(1): 41–48.
6. Arvanitis ML, Jagelman DG, Fazio VW et al. Mortality in patients with familial adenomatous polyposis. Dis Colon Rectum 1990; 33(8): 639–642.
7. Bertario L, Presciuttini S, Sala P et al. Causes of death and postsurgical survival in familial adenomatous polyposis: results from the Italian Registry. Italian Registry of Familial Polyposis Writing Committee. Semin Surg Oncol 1994; 10(3): 225–234.
8. McAdam WA, Goligher JC. The occurence of desmoids in patients with familial polyposis coli. Br J Surg 1970; 57(8): 618–631.
9. Church JM. Desmoid tumours in patients with familial adenomatous polyposis. Semin Colon Rectal Surg 1995; 6: 29–32.
10. Clark SK, Phillips RK. Desmoids in familial adenomatous polyposis. Br J Surg 1996; 83(11): 1494–1504.
11. Knudsen AL, Bülow S. Desmoid tumour in familial adenomatous polyposis. A review of literature. Fam Cancer 2001; 1(2): 111–119.
12. Fletcher JA, Naeem R, Xiao S et al. Chromosome aberrations in desmoid tumors. Trisomy 8 may be a predictor of recurrence. Cancer Genet Cytogenet 1995; 79(2): 139–143.
13. Bridge JA, Swarts SJ, Buresh C et al. Trisomies 8 and 20 characterize subgroup of benign fibrous lesions arising in both soft tissue and bone. Am J Pathol 1999; 154(3): 729–733.
14. Fodde R, Smits R, Clevers H. APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 2001; 1(1): 55–67.
15. Jemal A, Siegel R, Ward E et al. Cancer statistics, 2007. CA Cancer J Clin 2007; 57(1): 43–66.
16. Solomon C, Burt RW. Familial adenomatous polyposis, Gene reviews 2004. Available from: http://www.geneclinics.org/profiles/fap/details.html.
17. Kune S, Kune GA, Watson L. The Melbourne colorectal cancer study: incidence findings by age, sex, site, migrants and religion. Int J Epidemiol 1986; 15(4): 483–493.
18. Nelson RL, Persky V, Turyk M. Determination of factors responsible for the declining incidence of colorectal cancer. Dis Colon Rectum 1999; 42(6): 741–752.
19. Groden J, Thliveris A, Samowitz W et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991; 66(3): 589–600.
20. Kinzler KW, Nilbert MC, Vogelstein B et al. Identification of FAP locus genes from chromosomes 5q21. Science 1991; 253(5020): 661–665.
21. Nagase H, Nakamura Y. Mutations of the APC (adenomatous polyposis coli) gene. Hum Mutat 1993; 2(6): 425–434.
22. Gardner EJ, Burt RW, Freston JW. Gastrointestinal Polyposis: Syndromes and Genetic Mechanisms. West J Med 1980; 132(6): 488–499.
23. Kadmon M, Tandara A, Herfarth C. Duodenal adenomatosis in familial adenomatous polyposis coli. A review of the literature and results from the Heidelberg Polyposis Register. Int J Colorectal Dis 2001; 16(2): 63–75.
24. Friedl W, Caspari R, Sengteller M et al. Can APC mutation analysis contribute to therapeutic decisions in familial adenomatous polyposis? Experiebce from 680 FAP families. Gut 2001; 48(4): 515–521.
25. Spirio LN, Samowitz W, Robertson J et al. Alelles of APC modulate the frequency and classes of mutation that lead to colon polyps. Nat Genet 1998; 20(4): 385–388.
26. Soravia C, Berk T, Madlensky L et al. Genotype-phenotype correlations in attenuated adenomatous popyposis coli. Am J Hum Genet 1998; 62(6): 1290–1301.
27. van der Luijt RB, Meera Khan P, Vasen HF et al. Germline mutations in the 3‘ part of APC exon 15 do not result in truncated proteins and are associated with attenuated adenomatous polyposis coli. Hum Genet 1996; 98(6): 727–734.
28. Friedl W, Meuschel S, Caspari R et al. Attenuated familial adenomatous polyposis due to a mutation in the 3‘ part of the APC gene. A clue for understanding the function of the APC protein. Hum Genet 1996; 97(5): 579–584.
29. Jen J, Powell SM, Papadopoulos N et al. Molecular determinants of dysplasia in colorectal lesions. Cancer Res 1994; 54(21): 5523–5526.
30. Weinberg RA. The biology of cancer. 1st ed. New York: Garland Science, Taylor & Francis Group 2007.
31. Lamlum H, Ilyas M, Rowan A et al. The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudsons „two-hit“ hypothesis. Nat Med 1999, 5(9): 1071–1075.
32. Groves C, Lamlum H, Crabtree M et al. Mutation cluster region, association between germline and somatic mutations and genotype-phenotype correlation in upper gastrointestinal familial adenomatous polyposis. Am J Pathol 2002;160(6): 2055–2061.
33. Palmirotta R, Curia MC, Esposito DL et al. Novel mutations and inactivation of both alleles of the APC gene in desmoid tumors. Hum Mol Genet 1995; 4(10): 1979–1981.
34. Miyaki M, Konishi M, Kikuchi-Yanoshita R et al. Coexistence of somatic and germ-line mutations of APC gene in desmoid tumors from patients with familial adenomatous polyposis. Cancer Res 1993; 53(21): 5079–5082.
35. Latchford A, Volikos E, Johnson V et al. APC mutations in FAP – associated desmoid tumours are non-random but not „just right“. Hum Mol Genetics 2007; 16(1): 78–82.
36. Saito T, Oda Y, Kawaguchi KI et al. Possible association between higher beta-catenin mRNA expression and mutated beta-catenin in sporadic desmoid tumors: real-time semiquantitative assay by TaqMan PCR. Lab Invest 2002; 82(1): 97–103.
37. Cheon SS, Cheah AY, Turley S et al. Beta-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc Natl Acad Sci USA 2002; 99(10): 6973–6978.
38. Lazar AJ, Tuvin D, Hajibashi S et al. Specific mutations in the beta-catenin gene (CTNNBl) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol 2008; 173(5): 1518–1527.
39. Yang JL, Wang J, Zhou XY et al. Abnormalities of chromosome 8, APC and beta-catenin genes in aggressive fibromatosis. Zhonghua Zhong Liu Za Zhi 2008; 30(2): 116–120.
40. Thway K, Gibson S, Ramsay A et al. Beta-catenin expression in pediatric fibroblastic and myofibroblastic lesions: a study of 100 cases. Pediatr Dev Pathol 2009; 12(4): 292–296.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology
2012 Issue 2
Most read in this issue
- Agressive Fibromatosis: Genetic and Biological Correlations
- Aggressive Fibromatosis: Clinical Aspects
- Palliative Surgical Treatment of Tumors of Pancreas and Periampullary Region
- Thyroid Disorders in Women with Breast Cancer