Pleural effusion – cytological-energy analysis versus traditional Light’s criteria
Authors:
I. Matuchová 1,2,3; P. Kelbich 1,2,3; J. Kubalík 2,4; I. Staněk 4; J. Špička 5; V. Malý 4; O. Karpjuk 4; E. Hanuljaková 1,3; J. Krejsek 2
Authors‘ workplace:
Biomedicínské centrum, Krajská zdravotní, a. s. - Masarykova nemocnice v Ústí nad Labem, o. z.
1; Ústav klinické imunologie a alergologie, LF UK v Hradci Králové a FN v Hradci Králové
2; Laboratoř pro likvorologii, neuroimunologii, patologii a speciální diagnostiku Topelex, s. r. o.
3; Oddělení hrudní chirurgie, Krajská zdravotní, a. s. - Masarykova nemocnice v Ústí nad Labem, o. z.
4; Oddělení klinické biochemie, Krajská zdravotní, a. s. - Masarykova nemocnice v Ústí nad Labem, o. z.
5
Published in:
Klin. Biochem. Metab., 29, 2021, No. 4, p. 190-198
Overview
Objective: Comparison of diagnostic efficiency of Light’s parameters with cytological-energy analysis parameters of pleural effusion.
Design: retrospective.
Settings: Biomedical Centre, Krajská zdravotní, a. s. - Masaryk Hospital in Ústí nad Labem, o. z.; Department of Clinical Immunology and Allergology, Faculty of Medicine and University Hospital in Hradec Králové, Charles University in Prague; Laboratory for Cerebrospinal Fluid, Neuroimmunology, Pathology and Special Diagnostics Topelex, s.r.o; Department of Thoracic Surgery, Krajská zdravotní, a.s. - Masaryk Hospital in Usti nad Labem, o.z.; Department of Clinical Biochemistry, Krajská zdravotní, a.s. – Masaryk Hospital in Ústí nad Labem, o.z.
Material and Methods: The 96 samples of noninflammatory pleural effusions of patients with cardiac failure or systemic sepsis, the 211 samples of pleural effusions of patients with purulent pneumonia and the 283 samples of pleural effusions of patients with chest empyema were analysed. In all cases, we analysed selected parameters of Light criteria (total number of nuclear elements in 1 µl, concentration of total protein, glucose, lactate and catalytic activity of lactate dehydrogenase (LDH)) and parameters of cytological-energy analysis (frequency of neutrophils, KEB value and catalytic activity of aspartate aminotransferase (AST)). Statistical analysis was performed using the ANOVA Kruskal-Wallis test and ROC-analysis.
Results: We found significant differences of parameters of Light‘s criteria and cytological-energy analysis between inflammatory and noninflammatory pleural effusions (p < 0.01). We found significant differences between patients with purulent pneumonia and chest empyema (p < 0.01). Light’s criteria parameters included total number of nuclear elements, concentration of total protein, lactate and catalytic activities of LDH. Cytological-energy parameters included KEB value and catalytic activities of AST.
We found high diagnostic accuracy of ,,Light’s‘‘ concentration of glucose (AUC = 0.981), lactate (AUC = 0.970) and catalytic activities of LDH (AUC = 0.962) and ,,cytological-energy‘‘ frequency of neutrophils (AUC = 0.982), KEB values (AUC = 0.999) and catalytic activities of AST (AUC = 0.954) to distinguish between noninflammatory and parapneumonic pleural effusions.
We found high diagnostic accuracy of „Light’s“ total number of nuclear elements (AUC = 0.939), concentration of glucose (AUC = 0.967), lactate (AUC = 0.987) and catalytic activities of LDH (AUC = 0.984) and ,,cytological-energy‘‘ frequency of neutrophils (AUC = 0.985), KEB values (AUC = 0.991) and catalytic activities of AST (AUC = 0.979) to distinguish between noninflammatory pleural effusions and pleural effusions of patients with chest empyema.
We found low diagnostic accuracy of all parameters to distinguish parapneumonic effusion and pleural effusion of patients with chest empyema: „Light’s“ total number nuclear elements (AUC = 0.714), concentration of glucose (AUC = 0.631), lactate (AUC = 0.721), total protein (AUC = 0.537) and catalytic activities of LDH (AUC = 0.710) and „cytological-energy‘‘ frequency of neutrophils (AUC = 0.553), KEB values (AUC = 0.671) and catalytic activities of AST (AUC = 0.718).
Conclusion: The advantage of cytological-energy analysis versus Light’s criteria parameters is in their abilities to characterize a local immune response considering the energy state. Both methods complement each other appropriately. In any case, they do not contradict each other.
Keywords:
Pleural effusion – pneumonia – empyema – Light’s criteria – cytological-energy analysis – coefficient of energy balance
Sources
1. Teřl, M., Pešek, A., Tauchman, A. Pleurální výpotek v interní praxi. Vnitř. Lék., 2015, 51 (4), s. 430-437.
2. Šimánek, V., Třeška, V., Klečka, J., Špidlen, V., Vodička, J. Empyém hrudníku. Interní Med., 2005, 7(7), 358-359.
3. Light, R. W, Macgregor, M. I., Luchsinger, P. C., Ball, W. C. Pleural effusions: the diagnostic separation of transudates and exudates. Ann. Intern., 1972, 77, s. 507–513.
4. Light, R. W. Light Criteria: The Beginning and Why they are Useful 40 Years Later. Clinics in Chest Medicine, 2013, 34 (1), s. 21-26.
5. Na, M. J. Diagnostic tools of pleural effusion. Tuberc. Respir. Dis., 2014; 76, s. 199–210.
6. Karkhanis, V. S., Joshi, J. M. Pleural effusion: diagnosis, treatment, and management. Open Access Emerg. Med., 2012, 4, s. 31–52.
7. Salajka, F. Pleurální výpotky – etiologie a diagnostika. Kardiol. Rev. Int. Med., 2009, 11(4): s. 181-186.
8. Uzan, G., İkitimur, H. Pleural Effusion in End Stage Renal Failure Patients. Sisli Etfal Hastan Tip. Bul., 2019, 1953(1), s. 54-57.
9. Wiener-Kronish, J. P, Matthay, M. A., Callen, P. W. et al. Relationship of pleural effusions to pulmonary hemodynamics in patients with congestive heart failure. Am. Rev. Respir. Dis., 1985, 132, s. 1253-1256.
10. Ahmed, O., Zangan S. Emergent management of empyema. Semin. Intervent. Radiol., 2012, 29, s. 226–230.
11. Šimánek, V., Třeška, V., Klečka, J., Špidlen, V., Vodička, J. Empyém hrudníku. Interní Med., 2005, 7(7), s. 358-359.
12. Peterman, T. A., Speicher, C. E. Evaluating Pleural EffusionsA Two-Stage Laboratory Approach. JAMA, 1984, 252(8), s. 1051–1053.
13. Bystroňová, I., Kušnierová, P., Walder, P., Hlubek, R., Rolová, J., Stejskal, D. Přehled biomarkerů synoviální tekutiny u kloubních onemocnění. Klin. Biochem. Metab. 2021, 29(50), s. 11- 18.
14. Matuchova, I., Kelbich, P., Kubalik, J. et al. Cytological-energy analysis of pleural effusions with predominance of neutrophils. Ther. Adv. Respir. Dis., 2020,14:1753466620935772.
15. Kelbich, P., Malý, V., Matuchová, I. et al. Cytological-energy analysis of pleural effusions. Ann. Clin. Biochem., 2019, 56, s. 630–637.
16. Sobek, O; Dušková, J. Laboratorní vyšetření likvoru. Štětkářová, I a kol. (eds.) Spinální neurologie. Praha: Maxdorf, 2019, ISBN 978-80-7345-626-9.
17. Zeman, D. Praktický průvodce laboratorním vyšetřením likvoru. Olomouc: Univerzita Palackého v Olomouci, 2018, 136 s. ISBN: 978-80-244-5262-3.
18. Kelbich, P., Hejčl, A., Staněk, I. et al. Principles of the cytological-energy analysis of the extravascular body fluids. Biochem. Mol. Biol. J., 2017, 3, s. 1-3.
19. Chubb, S. P., Williams, R. A. Biochemical Analysis of Pleural Fluid and Ascites. Clin. Biochem. Rev., 2018, 9(2), s. 39-50.
20. Krejsek, J. Imunologie člověka. Hradec Králové: Garamon, 2016, 495 s. ISBN: 978-80-86472-74-4 .
21. Santotoribio, J. D., Alnayef-Hamwie, H., Batalha-Caetano, P., Perez-Ramos, S., Pino, M. J. Evaluation of Pleural Fluid Lactate for Diagnosis and Management of Parapneumonic Pleural Effusion. Clin. Lab., 2016, 62(9), s. 1683-1687.
22. Kelbich, P., Hejčl, A., Selke Krulichová, I. et al. Coefficient of energy balance, a new parameter for basic investigation of the cerebrospinal fluid. Clin Chem. Lab. Med., 2014, 52, s. 1009–1017.
23. Kelbich, P., Slavík, S., Jasanská, J. et al. Evaluations of the energy relations in the CSF compartment by investigation of selected parameters of the glucose metabolism in the CSF. Klin. Biochem. Metab., 1998, 6, s. 213–225.
24. Kelbich, P., Radovnický, T., Selke-Krulichová, I. et al. Can Aspartate Aminotransferase in the Cerebrospinal Fluid Be a Reliable Predictive Parameter? Brain Sci., 2020, 10, s. 698.
25. De Long, E. R., De Long, D. M., Clarke-Pearson, D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach, Biometrics, 1988; 44, s. 837–845.
26. Babior, B. M. The respiratory burst of phagocytes. The Journal of clinical investigation, 1984, 73(3), s. 599–601.
27. Borregaard, N., Herlin, T. Energy metabolism of human neutrophils during phagocytosis. The Journal of clinical investigation, 1982, 70(3), s. 550–557.
28. McCauley, L., Dean, N. Pneumonia and empyema: causal, casual or unknown. Journal of thoracic disease, 2015, 7(6), s. 992–998.
29. Karlson, P. Základy Biochemie. 3. přeprac. vyd. Praha: Academia, 1981, 504 s. ISBN 104-21-852.
30. Chavalittamrong, B., Angsusingha, K., Tuchinda, M. et al. Diagnostic Significance of pH, Lactic Acid Dehydrogenase, Lactate and Glucose in Pleural Fluid. Respiration, 1979, 38, s. 112-120.
Labels
Clinical biochemistry Nuclear medicine Nutritive therapistArticle was published in
Clinical Biochemistry and Metabolism
2021 Issue 4
Most read in this issue
- Use of serum calprotectin as rutine biomarker of bacterial infection
- Urea cycle disorders, Arginine Chloride in the treatment of hyperammonemia
- Monoklonální gamapatie – stále aktuální téma
- Pleural effusion – cytological-energy analysis versus traditional Light’s criteria