Oxysterols - biochemistry and clinical importance
Authors:
Š. Fojtíková; M. Vecka; J. Macášek; B. Staňková; M. Zeman; A. Žák
Authors‘ workplace:
IV. interní klinika – klinika gastroenterologie a hepatologie, IV. interní klinika, 1. LF UK a VFN v Praze, U Nemocnice 2, Praha 2, 128
01
Published in:
Klin. Biochem. Metab., 27, 2019, No. 4, p. 183-187
Overview
Oxysterols are oxidized cholesterol derivatives that have pleiotropic effects. We will focus on the function of oxysterols in the body, because oxysterols are ligands of various receptors. Thus, we will try to explain the role of oxysterols in selected human diseases. Oxysterols have several functions in the body: they are involved in maintaining cholesterol homeostasis, especially by binding to LXR or SREBPs triggering a cascade of events involved in the regulation of cholesterol metabolism. By modulating estrogen receptors and Hedgehog signaling, they affect morphogenesis, reproduction, immune response, and inflammatory response. Furthermore, the relationship between oxysterols and individual tumour types, in particular breast, prostate, colorectal and lung cancer, is discussed. The involvement of oxysterols in the pathogenesis of atherosclerosis and Alzheimer’s disease is also described.
Keywords:
Atherosclerosis – oxysterols – LXR – cancerogenesis – Alzheimer disease
Sources
1. Guillemot-Legris, O., Mutemberezi, V., Muccioli, G. G. Oxysterols in Metabolic Syndrome: From Bystander Molecules to Bioactive Lipids. Trends Mol Med., 2016, 22(7), p. 594-614.
2. Olsen, B. N., Schlesinger, P. H., Ory, D. S., Baker, N. A. Side-Chain Oxysterols: From Cells to Membranes to Molecules. Biochim Biophys Acta., 2012, 1818(2), p. 330–6.
3. Mutemberezi, V., Guillemot-Legris, O., Muccioli, G. G. Oxysterols: From cholesterol metabolites to key mediators. Prog Lipid Res., 2016, 64, p.152-69.
4. Olkkonen, V. M., Béaslas, O., Nissilä, E. Oxysterols and their cellular effectors. Biomolecules. 2012, 2(1), p.76-103.
5. Schulman, I. G. Liver X receptors link lipid metabolism and inflammation. FEBS Lett. 2017, 591(19), p. 2978-91.
6. Radhakrishnan, A., Ikeda, Y., Kwon, H. J., Brown, M., Goldstein, J. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proceedings of the National Academy of Sciences of the United States of America. 2007, 104, p. 6511–8.
7. Courtney, R., Landreth, G. E. LXR Regulation of Brain Cholesterol: From Development to Disease. Trends Endocrinol Metab. 2016, 27(6), p. 404-14.
8. Soroosh, P., Wu, J., Xue, X., Song, J., Sutton, S. W., Sablad, M., et al. Oxysterols are agonist ligands of RORγt and drive Th17 cell differentiation. Proc Natl Acad Sci U S A. 2014, 111(33), 12163-8.
9. Lee, W. R., Ishikawa, T., Umetani, M. The interaction between metabolism, cancer and cardiovascular di-sease, connected by 27-hydroxycholesterol. Clin Lipidol. 2014, 9(6), p. 617-24.
10. Lappano, R., Recchia, A. G., De Francesco, E. M., Angelone, T., Cerra, M. C., Picard, D., Maggiolini, M. The cholesterol metabolite 25-hydroxycholesterol activates estrogen receptor α-mediated signaling in cancer cells and in cardiomyocytes. PLoS One. 2011, 6(1), e16631.
11. Mei, J., Liu, Y., Dai, N., Hoffmann, C., Hudock, K. M., Zhang, P., Guttentag, S. H., Kolls, J. K., Oliver, P. M., Bushman, F. D., Worthen, G. S. Cxcr2 and Cxcl5 regulate the IL-17/G-CSF axis and neutrophil homeostasis in mice. J Clin Invest. 2012,122(3), p. 974-86.
12. Jin, W., Dong, C. IL-17 cytokines in immunity and inflammation. Emerg Microbes Infect. 2013, 2(9),e60.
13. Vihervaara, T., Jansen, M., Uronen, R. L., Ohsaki, Y., Ikonen, E., Olkkonen, V. M. Cytoplasmic oxysterol-binding proteins: sterol sensors or transporters? Chem Phys Lipids. 2011, 164(6), p. 443-50.
14. Luu, W., Sharpe, L. J., Capell-Hattam, I., Gelissen, I. C., Brown, A. J. Oxysterols: Old Tale, New Twists. Annu Rev Pharmacol Toxicol. 2016, 56, 447-67.
15. Huang, P., Zheng, S., Wierbowski, B. M., Kim, Y., Nedelcu, D., Aravena, L., Liu, J., Kruse, A. C., Salic, A. Structural Basis of Smoothened Activation in Hedgehog Signaling. Cell. 2018, 174(2), p. 312-24.
16. Kitahara, C. M., Berrington de González, A., Freedman, N. D., Huxley, R., Mok, Y., Jee, S. H., Samet, J. M. Total cholesterol and cancer risk in a large prospective study in Korea. J Clin Oncol. 2011, 29, p. 1592–8.
17. Nelson, E. R., Wardell, S. E., Jasper, J. S., Park, S., Suchindran, S., Howe, M. K.,Carver, N. J., Pillai, R. V., Sullivan, P. M., Sondhi, V., et al. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science. 2013, 342, p.1094–8.
18. Baek, A. E., Yu, Y. A., He, S., Wardell, S. E., Chang, C. Y., Kwon, S., et al. The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat Commun. 2017, 8(1), p. 864.
19. Lamb, L. S. Jr., Lopez, R. D. Gammadelta T Cells: A New Frontier for Immunotherapy? Biol Blood Marrow Transplant. 2005, 11(3), p. 161-8.
20. Chuu, C. P., Chen, R. Y., Hiipakka, R. A., Kokontis, J. M., Warner, K. V., Xiang. J., Liao, S. The liver X receptor agonist T0901317 acts as androgen receptor antagonist in human prostate cancer cells. Biochem. Biophys. Res. Commun. 2007, 357, p. 341–6.
21. Chuu, C. P., Lin, H. P. Antiproliferative effect of LXR agonists T0901317 and 22(R)-hydroxycholesterol on multiple human cancer cell lines. Anticancer Res. 2010, 30, p. 3643–8.
22. Poirot, M., Soules, R., Mallinger, A., Dalenc, F., Silvente-Poirot, S. Chemistry, biochemistry, metabolic fate and mechanism of action of 6-oxo-cholestan-3b,5a-diol (OCDO), a tumor promoter and cholesterol metabolite. Biochimie. 2018, 153, p. 139-49.
23. Brown, A. J., Jessup, W. Oxysterols and atherosclerosis. Atherosclerosis. 1999, 142, p.1–28.
24. Lemaire, S., Lizard, G., Monier, S., Miguet, C., Gueldry, S., Volot, F., Gambert, P., Néel, D. Different patterns of IL-1beta secretion, adhesion molecule expression and apoptosis induction in human endothelial cells treated with 7alpha-, 7beta-hydroxycholesterol, or 7-ketocholesterol. FEBS Lett. 1998, 440, p. 434-9.
25. Gargiulo, S., Gamba, P., Testa, G., Rossin, D., Biasi, F., Poli, G., Leonarduzzi, G. Relation between TLR4/NF-κB signaling pathway activation by 27-hydroxycholesterol and 4-hydroxynonenal, and atherosclerotic plaque instability. Aging Cell. 2015, 14, p. 569-81.
26. Gargiulo, S., Sottero, B., Gamba, P., Chiarpotto, E., Poli, G., Leonarduzzi, G. Plaque oxysterols induce unbalanced up-regulation of matrix metalloproteinase-9 in macrophagic cells through redoxsensitive signaling pathways: Implications regarding the vulnerability of athe-rosclerotic lesions. Free Radic Biol Med. 2011, 51, p. 844-55.
27. Vurusaner, B., Gamba, P., Testa, G., Gargiulo, S., Biasi, F., Zerbinati, C., Iuliano, L., Leonarduzzi, G., Basaga, H., Poli, G. Survival signaling elicited by 27-hydroxycholesterol through the combined modulation of cellular redox state and ERK/Akt phosphorylation. Free Radic Biol Med. 2014, 77, p. 376-85.
28. Watson, K. E., Bostrom, K., Ravindranath, R., Lam, T., Norton, B., Demer, L. L. TGF-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J Clin Invest. 1994, 93, p. 2106–13.
29. Zurkinden, L., Sviridov, D., Vogt, B., Escher, G. Sterol 27-hydroxylase gene dosage and the antiatherosclerotic effect of Rifampicin in mice. Biosci Rep. 2018, 38(1). pii: BSR20171162.
30. Jirák, R., Koukolík, F. Demence. Galén, 2004, 335 s.
31. Bjorkhem, I. Crossing the barrier: oxysterols as chole-sterol transporters and metabolic modulators in the brain. J Intern Med. 2006, 260, p. 493–508.
32. Dietschy, J. M., Turley, S. D. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res. 2004, 45, p. 1375–1397.
33. Kotti,T. J., Ramirez, D. M., Pfeiffer, B. E., Huber, K. M., Russell, D. W. Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc Natl Acad Sci U S A. 2006,103, p. 3869–74.
34. Bjorkhem, I., Meaney, S. Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol. 2004,24, p. 806–81.
35. Mateos, L., Akterin, S., Gil-Bea, F. J., Spulber, S., Rahman, A., Björkhem, I., Schultzberg, M., Flores-Morales, A., Cedazo-Mínguez, A. Activity-regulated cytoskeleton-associated protein in rodent brain is down-regulated by high fat diet in vivo and by 27-hydroxycholesterol in vitro. Brain Pathol. 2009, 19(1), p. 69–80.
36. Grimm, M. O., Zimmer, V. C., Lehmann, J., Grimm, H. S., Hartmann, T. The Impact of Cholesterol, DHA, and Sphingolipids on Alzheimer’s Disease. Biomed Res Int. 2013, 2013:814390.
37. Ma, W. W., Li, C. Q., Yu, H. L., Zhang, D. D., Xi, Y. D., Han, J., Liu, Q. R., Xiao, R. The oxysterol 27-hydroxycholesterol increases oxidative stress and regulate Nrf2 signaling pathway in astrocyte cells. Neurochem Res. 2015, 40(4), p. 758-66.
38. Testa, G., Staurenghi, E., Zerbinati, C., Gargiulo, S., Iuliano, L., Giaccone, G., Fantò, F., Poli, G., Leonarduzzi, G., Gamba, P. Changes in brain oxysterols at different stages of Alzheimer’s disease: Their involvement in neuroinflammation. Redox Biol. 2016, 10, p. 24-33.
39. Sandoval-Hernández, A. G., Buitrago, L., Moreno, H., Cardona-Gómez, G. P., Arboleda, G. Role of Liver X Receptor in AD Pathophysiology. PLoS One. 2015,10(12):e0145467.
Labels
Clinical biochemistry Nuclear medicine Nutritive therapistArticle was published in
Clinical Biochemistry and Metabolism
2019 Issue 4
Most read in this issue
- Hypernatremia – Frequency, Causes, Pathobiochemistry, Clinic and Therapy
- Non-specific and ambiguous positive laboratory findings
- Oxysterols - biochemistry and clinical importance
- Macro-complexes and possibilities of their detection