Role of oxidative stress in Alzheimer´s disease and related consequences
Authors:
Z. Chmátalová; A. Skoumalová
Authors‘ workplace:
Ústav lékařské chemie a klinické biochemie 2. LF UK v Praze.
Published in:
Klin. Biochem. Metab., 22 (43), 2014, No. 4, p. 189-195
Overview
Oxidative stress is to some extent a physiological consequence of biochemical and bioenergetic processes and accompanies aerobic organisms throughout their lives. Oxidative stress contributes to the natural aging and plays an important role in the immune response. Each organism has developed a complex system of antioxidant defense which protects it against the free radical damage. The failure of this highly specialized system can lead to irreversible damage to biomolecules and thereby seriously damage their physiological functions. Radical damage and loss of functions of brain cells is characteristic of neurodegenerative diseases such as Alzheimer’s disease. This is the reason why the increased oxidative stress is thought to be the initial impetus for developing this progressive disease. This article brings an overview of pathobiochemical mechanisms of oxidative stress in the brain tissue that accompany progression of Alzheimer´s disease.
Keywords:
oxidative stress, free radicals, Alzheimer’s disease.
Sources
1. Markesbery, W. R., Carney, J. M. Oxidative alterations in Alzheimer´s disease. Brain Pathol, 1999, 9, p. 133-146.
2. Halliwell, B. How to Characterize a Biological Antioxidant. Free Radic Res, 1990, 9 (1), p. 1-32.
3. Gilgun-Sherki, Y., Melamed, E., Offen, D. Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology, 2001, 40, p. 959-975.
4. Linton, S., Davies, M.J., Dean, R. T. Protein oxidation and ageing. Exp Gerontol, 2001, 36, p.1503-1518.
5. Behl, C., Moosmann, B. Antioxidant neuroprotection in Alzheimer´s disease as preventive and therapeutic approach. Free Radic Biol Med, 2002,33(2), p. 182-191.
6. Coyle, J. T., Puttfarcken, P. Oxidative stress, glutamate and neurodegenerative disorders. Science, 1993, 262 (5134), p.689-695.
7. Rajendran, R., Ren, M. Q., Ynsa, M. D., Casadesus, G., Smith, M. A., Perry, G., Halliwell, B., Watt, F. A novel approach to the identification and quantitative elemental analysis of amylois deposits-insights into the patology of Alzheimer´s disease. Biochem Biophys Res Commun, 2009, 382, p. 91-95.
8. Jomova, K., Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology, 2011, 283, p. 65-87.
9. Hung, Y. H., Bush, A. I., Cherny, R. A. Copper in the brain and Alzheimer´s disease. J Biol Inorg Chem, 2010, 15, p. 61-76.
10. Garai, K., Sengupta, P., Sahoo, B., Maiti, S. Selective destabilization of soluble amyloid β oligomers by divalent metal ions. Biochem. Biophys. Res. Commun., 2006, 345, p. 210-215.
11. Cuajungco, M. P., Goldstein, L. E., Nunomura, A., Smith, M. A., Lim, J. T., Atwood, C. S., Huang, X., Farrag, Y. W., Perry, G., Bush, A. I. Evidence that the beta-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of abeta by zinc. J Biol Chem, 2000, 275, p. 19439-19442.
12. Thornalley, P. J. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endpro-ducts. Arch Biochem Biophys, 2003, 419, p. 31-40.
13. Iwata, H., Ukeda, H., Maruyama, T., Fujino, T., Sawamura, M. Effect of carbonyl compounds on red blood cells deformability. Biochem Biophys Res Commun, 2004, 321, p. 700-706.
14. Monnier, V. M., Cerami, A. Nonenzymatic browning in vivo: possible proces for aging of long-lived proteins. Science, 1981, 211, p. 491-493.
15. Ledesma, M. D., Bonay, P., Colaco, C., Avila, J. Analysis of Microtubule-associated Protein Tau Glycation in Paired Helical Filament. J Biol Chem, 1994, 269 (34), p. 21614-21619.
16. Girones, X., Guimera, A., Cruz-Sanchez, C. Z., Ortega, A., Sasaki, N., Makita, Z., Lafuente, J. V., Kalaria, R., Cruz-Sanchez, F. F. N epsilon-carboxymethyllysine in brain aging, diabetes mellitus, and Alzheimer´s disease. Free Radic Biol Med, 2004, 36, p. 1241-1247.
17. Srikhanth, V., Maczurek, A., Phan, T., Steele, M., Westcott, B., Juskiw, D., Münch, G. Advanced glycation end products and their receptor RAGE in Alzheimer´s disease. Neurobiol aging, 2011, 32, p. 763-777.
18. Gutteridge, J. M. C. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem, 1995, 41 (12), p. 1819-1828
19. Esterbauer, H., Schaur, R. J., Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med, 1991, 11, p. 81-128.
20. Carini, M., Aldini, G., Facino, R. M. Mass spectro-metry for detection of 4-hydroxy-trans-2-nonenal (HNE) adducts with peptides and protein. Mass spectrom Rev, 2004, 23, p. 281-305.
21. Montine, T. J., Amarnath, V., Martin, M. E., Strittmatter, W. J., Graham, D. G. E-4-hydroxy-2-nonenal is cytotoxic and cross-links cytoskeletal proteins in P19 neuroglial cultures. Am J Pathol, 1996, 148 (1), p. 89-93.
22. Butterfield, D. A., Mohmmad-Abdul, H., Opii, W., Newman, S. F., Joshi, G., Ansari, M. A., Sultana, R. Role of Pin-1 in Alzheimer´s disease. J Neurochem, 2006, 98, p. 1699-1706.
23. Williams, T. I., Lynn, B. C., Markesbery, W. R., Lovell, M. A. Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidatin, in the brain in mild cognitive impairment and early Alzheimer´s disease. Neurobiol Aging, 2006, 28(8), p. 1094-1099.
24. Davies, M. J., Fu, S., Wang, H., Dean, R. T. Stable markers of oxidant damage to proteins and their implication in study of human diseases. Free Radic Biol Med, 1999, 27, p. 1151-1161.
25. Stadtman, E. R., Levine, R. L. Free radical-mediated oxidation of free amino acids and amino acids residues in proteins. Amino Acids, 2003, 25, p. 207-218.
26. Grune, T., Merker, K., Sandig, G., Davies, K. J. A. Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun, 2003, 305, p. 709-718.
27. Grune, T., Jung, T., Merker, K., Davies, K. J. A. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and „aggresomes“ during oxidative stress, aging, and disease. Int J Biochem Cell Biol, 2004, 36, p. 2519-2530.
28. Sultana, R., Perluigi, M., Butterfield, D. A. Oxidatively modified proteins in Alzheimer´s disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis. Acta Neuropathol, 2009, 118, p. 131-150.
29. Sultana, R., Boyd-Kimball, D., Poon, H. F., Cai, J., Pierce, W. M., Klein, J. B., Merchant, M., Markesbery, W. R., Butterfield, D. A. Redox proteomics identification of oxidized proteins in Alzheimer´s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol Aging, 2006, 27, p. 1564-1576.
30. Castegna, A., Aksenov, M., Aksenova, M., Thongboonkerd, V., Klein, J. B., Pierce, W. M., Booze, R., Markesbery, W. R., Butterfield, D. A. Proteomic identification of oxidatively modefied proteins in Alzheimer´s disease brain. Part I: creatinine kinase BB, glutamin synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med, 2002, 33, p. 562-571.
31. Spires, T. L., Meyer-Luehmann, M., Stern, E. A., McLean, P. J., Skoch, J., Nguyen, P. T., Bacskai, B. J., Hyman, B. T. Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J Neurosci, 2005, 25, p. 7278-7287.
32. Gabbita, S. P., Lovell, M. A., Markesbery, W. R. Increased nuclear DNA oxidation in the brain in Alzheimer´s disease. J Neurochem, 1998, 71, p. 2034-2040.
33. Sultana, R., Butterfield, D. A. Role of oxidative stress in the progression of Alzheimer disease. J Alzheimers Dis, 2010, 19, p. 341-353.
34. Butterfield, D. A. Amyloid β-peptide(1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer´s disease brain. Free Radic Res, 2002,36, p. 1307-1313.
Labels
Clinical biochemistry Nuclear medicine Nutritive therapistArticle was published in
Clinical Biochemistry and Metabolism
2014 Issue 4
Most read in this issue
- Refeeding syndrome – pathobiochemistry, electrolyte dysbalances and their correction
- Role of oxidative stress in Alzheimer´s disease and related consequences
- Liver Iron and Copper Assessment in Bioptic Material from Patients with Different Hepatic Pathology – Diagnostic Significance and Relationship to Serum Iron and Copper Parameters
- Harmonization, standardization, metrologic, succession in 2014. Principles, importance and data.