Number of cells in the cerebrospinal fluid, energy relations in the cerebrospinal fluid compartment and intensity of inflammatory response in the central nervous system
Authors:
P. Kelbich 1,2,3,4; A. Hejčl 5,6,12,13; J. Procházka 7; I. Selke Krulichová 8; J. Peruthová 1,4,9; E. Hanuljaková 2,4,10; J. Špička 11
Authors‘ workplace:
Oddělení klinické biochemie, hematologie a imunologie Nemocnice Kadaň s. r. o.
1; Oddělení klinické biochemie, Krajská zdravotní, a. s. - Masarykova nemocnice v Ústí nad Labem, o. z.
2; Ústav klinické imunologie a alergologie, Lékařská fakulta v Hradci Králové, Univerzita Karlova v Praze
3; Laboratoř pro likvorologii a neuroimunologii - Topelex s. r. o., Praha
4; Neurochirurgická klinika Univerzity J. E. Purkyně, Krajská zdravotní, a. s. - Masarykova nemocnice v Ústí nad Labem, o. z.
5; Mezinárodní centrum klinického výzkumu, Brno
6; Oddělení intenzivní medicíny, Krajská zdravotní, a. s. - Masarykova nemocnice v Ústí nad Labem, o. z.
7; Ústav lékařské biofyziky, Lékařská fakulta v Hradci Králové, Univerzita Karlova v Praze
8; Fakulta chemicko-technologická, Univerzita Pardubice
9; Oddělení klinické biochemie, Krajská zdravotní, a. s. - Nemocnice Most, o. z.
10; Ústav laboratorní diagnostiky, Fakultní nemocnice Královské Vinohrady, Praha
11; Ústav experimentální medicíny Akademie věd České republiky, v. v. i., Praha
12; Neurochirurgická klinika 1. lékařské fakulty Univerzity Karlovy a Ústřední vojenské nemocnice v Praze
13
Published in:
Klin. Biochem. Metab., 21 (42), 2013, No. 1, p. 6-12
Overview
Objective:
1. Evaluate the numbers of cells in the cerebrospinal fluid (CSF), glucose concentrations in the CSF, values of the glucose quotient (Qglu.), lactate concentrations in the CSF and values of the coefficient of energy balance (KEB) as indicators of intensity of the inflammatory process in the CSF in groups of patients without CNS impairment, with slight serous inflammation of non-infectious aetiology in the CNS, with serous inflammation of infectious aetiology in the CNS and of patients with purulent inflammation in the CNS with extracellular bacteria in pathogenesis.
2. Compare the information potential of the used parameters of the glucose energy metabolism in the CSF compartments in our group of the investigated patients, i.e. concentrations of glucose in the CSF, values of the Qglu., concentrations of lactate in the CSF and values of the KEB.
Design:
Retrospective study.
Material and Methods:
We examined 133 CSF specimens in patients without CNS impairment, 227 CSF specimens in patients with slight serous inflammation with intrathecal synthesis of immunoglobulins of non-infectious aetiology in the CNS, 208 CSF specimens in patients with serous inflammation of infectious aetiology in the CNS and 140 CSF specimens in patients with purulent inflammation in the CNS with extracellular bacteria in pathogenesis. The objects of our interest were numbers of cells in the CSF, concentrations of glucose in the CSF, values of the Qglu., concentrations of lactate in the CSF and values of the KEB. The D’Agostino Omnibus test, the Kruskal-Wallis test with follow-up post hoc analysis using the Dunn’s method, the Spearman correlation coefficient and the multinomial logistic regression analysis were used for statistical analysis of the examined parameters.
Results:
We did not find any changes in the numbers of cells in the CSF and in energy ratios in the CSF compartment of patients without CNS impairment. We found raised numbers of cells in the CSF and slight alterations of the glucose quotients, lactate concentrations in the CSF and the values of the KEB only in some patients with slight serous inflammations of non-infectious aetiology in the CNS. We observed manifestations of conspicuously increased intensity of inflammation in the numbers of cells in the CSF, lactate concentrations in the CSF and the values of the KEB in patients with serous inflammations of infectious aetiology in the CNS. Very high intensity of purulent inflammation in the CNS of bacterial aetiology was well apparent in all the evaluated parameters. Concerning the relationship, either direct or indirect, between the number of cells in the CSF and the other parameters, we found the highest correlation between the number of cells in the CSF and the values of the KEB (ρ = -0.770), followed by the lactate concentrations in the CSF (ρ = 0.734), the Qglu. (ρ = -0.676) and the glucose concentrations in the CSF (ρ = -0.544). We verified the applicability of the parameters mentioned above for prediction of the intensity of inflammation in the CNS via multinomial logistic regression analysis. The number of cells and the KEB, with 71.9 % and 71.6 % respectively, has the highest prediction potential of the correctly classified patients. They were followed by the lactate concentration in the CSF with 64.7 %, the Qglu. with 58.8 % and the glucose concentration with 54.7 % of the correctly classified patients.
Conclusion:
Our study supports the applicability of the numbers of cells in the CSF, the glucose concentrations in the CSF, the values of the Qglu., the lactate concentrations in the CSF and the values of the KEB for diagnosing CSF impairment and for monitoring the intensity of inflammation in the CNS. Further, the results enabled determination of the information potential of the energy parameters. The values of the KEB were most suitable for evaluation of the intensity of inflammation in the CNS. Less suitable results were achieved in case of the lactate concentrations in the CSF. Even worse results were observed in case of the values of Qglu. and the least suitable results were observed in case of the glucose concentrations in the CSF.
Key words:
number of cells in the CSF, energy relations in the CSF compartment, intensity of the inflammatory response in the CNS
Sources
1. Adam, P. Cytologie likvoru, 1st ed. Pardubice, Stapro, 1995.
2. Adam, P., Táborský, L., Sobek, O. et al. Cerebrospinal Fluid. In: Spiegel, H. E., Nowacki, G., Hsiao, K. J. (eds). Advances in Clinical Chemistry, Vol. 36. San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo: Academic Press, 2001, s. 1-62.
3. Adam, P., Táborský, L., Sobek, O., Kelbich, P. Cytology of Cerebrospinal Fluid. 1st ed. Praha: Medica News Publishers, 2003, s. 3-80, ISBN 80-86284-35-2.
4. Bartz, R. R., Piantadosi, C. A. Clinical review: Oxygen as a signaling molekule. Crit. Care, 2010, 14(5), s. 234-242.
5. Brett, M. M. Approach to the Patient with Abnormal Cerebrospinal Fluid Glucose Content. In: Irani, D. N. Cerebrospinal fluid in clinical practice. Philadelphia (PA): Saunders Elsevier, 2009, s. 282-284.
6. Hejčl, A., Bolcha, M., Procházka, J., Sameš, M. Multimodální monitorování mozku u pacientů s těžkým kraniocerebrálním traumatem a subarachnoidálním krvá-cením v neurointenzivní péči. Cesk. Slov. Neurol. N, 2009, 72/105(4), s. 383-387.
7. Hejčl, A., Bolcha, M., Procházka, J., Hušková, E., Sameš, M. Elevated Intracranial Pressure, and Impaired Brain Metabolism Correlate with Fatal Outcome After Severe Brain Injury. Cen. Eur. Neurosurg., 2011, 72, s. 1-6.
8. Hoffman, O., Weber, R. J. Pathophysiology and Treatment of Bacterial Meningitis. Ther Adv Neurol Disord., 2009, 2(6), s. 1-7.
9. Hořejší, V., Bartůňková, J. Základy imunologie. 4th ed. Praha: Triton, 2009. ISBN 978-80-7387-280-9.
10. Huy, N. T., Thao, N. T. H., Diep, D. T. N., Kikuchi, M., Zamora, J., Hirayama, K. Cerebrospinal fluid lactate concentration to distinguish bacterial from aseptic me-ningitis: a systemic review and meta-analysis. Crit. Care, 2010, 14(6), R240.
11. Chehtane, M., Khaled, A. R. Interleukin-7 mediates glucose utilization in lymphocytes through transcriptional regulation of the hexokinase II gene. Am. J Physiol. Cell. Physiol., 2010, 298(6), C1560-C1571.
12. Chodobski, A., Zink, B. J., Szmydynger-Chodobska, J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl. Stroke Res., 2011, 2(4), s. 492-516.
13. Johanson, C. E., Duncan III, J. A., Klinge, P. M., Brinker, T., Stopa, E. G., Silverberg, G. D. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res., 2008, 5, s. 10.
14. Kamen, L. A., Schlessinger, J., Lowell, C. A. Pyk2 is required for neutrophil degranulation and host defense responses to bacterial infection. J Immunol., 2011, 186(3), s. 1656-1665.
15. Kelbich, P., Slavík, S., Jasanská, J. et al. Hodnocení energetických poměrů v likvorovém kompartmentu pomocí vyšetřování vybraných parametrů metabolismu glukosy v CSF. Klin. Biochem. Metab., 1998, 6(27), s. 213-225.
16. Kelbich, P., Koudelková, M., Machová, H. et al. Význam urgentního vyšetření mozkomíšního moku pro včasnou diagnostiku neuroinfekcí. Klin. Mikrobiol. Inf. Lék., 2007, 13(1), s. 9-20.
17. Kelbich, P., Adam, P., Sobek, O. et al. Základní vyšetření likvoru v diagnostice postižení centrálního nervového systému. Neurol. pro praxi, 2009, 10(5), s. 285-289.
18. Kelbich, P., Hejčl, A., Procházka, J., Hanuljaková, E., Peruthová, J., Špička, J. Cytologie a energetika jako důležité atributy vyšetření likvoru. Klin. Biochem. Metab., 2012, 20(41), s. 17-24.
19. Krejsek, J., Kopecký, O. Klinická imunologie. 1st ed. NUCLEUS HK, 2004, ISBN 80-86225-50-X.
20. Marko, A. J., Miller, R. A., Kelman, A., Frauwirth, K. A. Induction of Glucose Metabolism in Stimulated T Lymphocytes Is Regulated by Mitogen-Activated Protein Kinase Signaling. PLoS ONE, 2010, 5(11), e15425.
21. Michalek, R. D., Rathmell, J. C. The metabolic life and times of a T-cell. Immunol. Rev., 2010, 236, s. 190-202.
22. Prasad, K., Sahu, J. K. Cerebrospinal fluid lactate: Is it a reliable and valid marker to distinguish between acute bacterial meningitis and aseptic meningitis? Crit. Care., 2011, 15(1), s. 104.
23. Redzic, Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and diffe-rences. Fluids Barriers CNS, 2011, 8, s. 3.
24. Reinstrup, P., Ståhl, N., Mellergård, P., Uski, T., Ungerstedt, U., Nordstöm, C.-H. Intracerebral Microdia-lysis in Clinical Practice: Baseline Values for Chemical Markers during Wakefulness, Anesthesia, and Neurosurgery. Neurosurgery, 2000, 47(3), s. 701-709.
25. Simpson, I. A., Carruthers, A., Vannucci, S. J. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb. Blood Flow Metab., 2007, 27(11), s. 1766-1791.
26. Šterzl, J. Imunitní systém a jeho fyziologické funkce. 1st ed. Praha, ČIS, 1993.
27. Tisdall, M. M., Smith, M. Cerebral microdialysis: research technice or clinical tool. Br. J Anaesth., 2006, 97, s. 18-25.
28. Veening, J. G., Barendregd, H. P. The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid; a review. Cerebrospinal Fluid Res., 2010, 7, s. 1.
Labels
Clinical biochemistry Nuclear medicine Nutritive therapistArticle was published in
Clinical Biochemistry and Metabolism
2013 Issue 1
Most read in this issue
- Significance and possibilities to examine brain metabolism in neurointensive care by microdialysis
- Changes in serum levels of markers in early detection of prostate cancer (pilot study)
- Number of cells in the cerebrospinal fluid, energy relations in the cerebrospinal fluid compartment and intensity of inflammatory response in the central nervous system
- The prevalence of decreased glomerular filtration rate in patients with monoclonal gammopathy of undetermined significance