Role of epicardial tissue in pathophysiology of cardiovascular diseases
Authors:
F. Souček 1; J. Novák 2
Authors‘ workplace:
I. interní kardioangiologická klinika FN u sv. Anny v Brně
1; II. interní klinika FN u sv. Anny v Brně
2
Published in:
Kardiol Rev Int Med 2018, 20(3): 212-217
Overview
Obesity is a significant risk factor for the development of cardiovascular diseases. Adipose tissue is currently considered to be a metabolically active organ. Rather than subcutaneous adipose tissue, visceral adipose tissue has importance in the pathophysiology of cardiovascular diseases. Due to its proximity to the heart, epicardial adipose tissue (EAT), which has the same embryonic origin as visceral adipose tissue, is currently widely studied for its possible involvement in the pathophysiology of cardiovascular diseases. EAT produces a number of biologically active substances which can affect the adjacent myocardium by paracrine or vasocrine signalling. The most robust evidence is available of the role of EAT in the pathophysiology of atherosclerosis and coronary artery disease. However, the position of EAT in pathophysiology of atrial fibrillation and heart failure is also evident. This review article provides information on current knowledge about the role of EAT in the pathophysiology of cardiovascular diseases and potential therapeutic implications.
Key words:
obesity – cardiovascular risk – epicardial adipose tissue
Sources
1. Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med 2005; 2(10): 536– 543. doi: 10.1038/ ncpcardio0319.
2. Rosito GA, Massaro JM, Hoffmann U et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample. Circulation 2008; 117(5): 605– 613. doi: 10.1161/ CIRCULATIONAHA.107.743062.
3. Iacobellis G, Willens HJ. Echocardiographic epicardial fat: a review of research and clinical applications: inflammatory mechanisms and persistence of atrial fibrillation. J Am Soc Echocardiogr 2009; 22(12): 1311– 1319. doi: 10.1016/ j.echo.2009.10.013.
4. Sacks HS, Fain JN. Human epicardial adipose tissue: A review. Am Heart J 2007; 153(6): 907– 917. doi: 10.1016/ j.ahj.2007.03.019.
5. Chung MK, Martin DO, Sprecher D et al. C-reactive protein elevation in patients with atrial arrhythmias. Circulation 2001; 104(24): 2886– 2891.
6. Duncan BB, Schmidt MI, Pankow JS et al. Adiponectin and the development of type 2 diabetes. Diabetes 2004; 53(9): 2473– 2478.
7. Baker AR, da Silva NF, Quinn DW et al. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol 2006; 5: 1– 1. doi: 10.1186/ 1475-2840-5-1.
8. Iacobellis G, Pistilli D, Gucciardo M et al. Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease. Cytokine 2005; 29(6): 251– 255. doi: 10.1016/ j.cyto.2004.11.002.
9. Jain SH, Massaro JM, Hoffmann U et al. Cross-sectional associations bet ween abdominal and thoracic adipose tissue compartments and adiponectin and resistin in the framingham heart study. Diabetes Care 2009; 32(5): 903– 908. doi: 10.2337/ dc08-1733.
10. Schäffler A, Schölmerich J. Innate immunity and adipose tissue biology. Trends Immunol 2010; 31(6): 228– 235. doi: 10.1016/ j.it.2010.03.001.
11. Prati F, Arbustini E, Labellarte A et al. Eccentric atherosclerotic plaques with positive remodelling have a pericardial distribution: a permissive role of epicardial fat? A three-dimensional intravascular ultrasound study of left anterior descending artery lesions. Eur Heart J 2003; 24(4): 329– 336.
12. Sacks HS, Fain JN, Cheema P et al. Inflammatory genes in epicardial fat contiguous with coronary atherosclerosis in the metabolic syndrome and type 2 diabetes: changes associated with pioglitazone. Diabetes Care 2011; 34(3): 730– 733. doi: 10.2337/ dc10-2083.
13. Pezeshkian M, Noori M, Najjarpour-Jabbari H et al. Fatty acid composition of epicardial and subcutaneous human adipose tissue. Metab Syndr Relat Disord 2009; 7(2): 125– 131.
14. Yao X, Shan S, Zhang Y et al. Recent progress in the study of brown adipose tissue. Cell Biosci 2011; 1: 35. doi: 10.1186/ 2045-3701-1-35.
15. Sacks HS, Fain JN, Holman B et al. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J Clin Endocrinol Metab 2009; 94(9): 3611– 3615. doi: 10.1210/ jc.2009-0571.
16. Sicari R, Sironi AM, Petz R et al. Pericardial rather than epicardial fat is a cardiometabolic risk marker: an MRI vs echo study. J Am Soc Echocardiogr 2011; 24(10): 1156– 1162. doi: 10.1016/ j.echo.2011.06.013.
17. Fox CS, Gona P, Hoffmann U et al. Pericardial fat, intrathoracic fat, and measures of left ventricular structure and function: the Framingham Heart Study. Circulation 2009; 119(12): 1586– 1591. doi: 10.1161/ CIRCULATIONAHA.108.828970.
18. Djaberi R, Schuijf JD, van Werkhoven JM et al. Relation of Epicardial Adipose Tissue to Coronary Atherosclerosis. Am J Cardiol 2008; 102(12): 1602– 1607. doi: 10.1016/ j.amjcard.2008.08.010.
19. Wang TD, Lee WJ, Shih FY et al. Relations of epicardial adipose tissue measured by multidetector computed tomography to components of the metabolic syndrome are region-specific and independent of anthropometric indexes and intraabdominal visceral fat. J Clin Endocrinol Metab 2009; 94(2): 662– 669. doi: 10.1210/ jc.2008-0834.
20. Mazurek T, Zhang L, Zalewski A et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 2003; 108(20): 2460– 2466. doi: 10.1161/ 01.CIR.0000099542.57313.C5.
21. Hartman J, Frishman WH. Inflammation and atherosclerosis: a review of the role of interleukin-6 in the development of atherosclerosis and the potential for targeted drug therapy. Cardiol Rev 2014; 22(3): 147– 151. doi: 10.1097/ CRD.0000000000000021.
22. Iwayama T, Nitobe J, Watanabe T et al. The role of epicardial adipose tissue in coronary artery disease in non-obese patients. J Cardiol 2014; 63(5): 344– 349. doi: 10.1016/ j.jjcc.2013.10.002.
23. Pierdomenico SD, Pierdomenico AM, Cuccurullo F et al. Meta-analysis of the relation of echocardiographic epicardial adipose tissue thickness and the metabolic syndrome. Am J Cardiol 2013; 111(1): 73– 78. doi: 10.1016/ j.amjcard.2012.08.044.
24. Yerramasu A, Dey D, Venuraju S et al. Increased volume of epicardial fat is an independent risk factor for accelerated progression of sub-clinical coronary atherosclerosis. Atherosclerosis 2012; 220(1): 223– 230. doi: 10.1016/ j.atherosclerosis.2011.09.041.
25. Wang TD, Lee WJ, Shih FY et al. Association of epicardial adipose tissue with coronary atherosclerosis is region-specific and independent of conventional risk factors and intra-abdominal adiposity. Atherosclerosis 2010; 213(1): 279– 287. doi: 10.1016/ j.atherosclerosis.2010.07.055.
26. Ding J, Hsu FC, Harris TB et al. The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 2009; 90(3): 499– 504. doi: 10.3945/ ajcn.2008.27358.
27. Ito T, Nasu K, Terashima M et al. The impact of epicardial fat volume on coronary plaque vulnerability: insight from optical coherence tomography analysis. Eur Heart J Cardiovasc Imaging 2012; 13(5): 408– 415. doi: 10.1093/ ehjci/ jes022.
28. Schlett CL, Ferencik M, Kriegel MF et al. Association of pericardial fat and coronary high-risk lesions as determined by cardiac CT. Atherosclerosis 2012; 222(1): 129– 134. doi: 10.1016/ j.atherosclerosis.2012.02.029.
29. Sade LE, Eroglu S, Bozbaş H et al. Relation between epicardial fat thickness and coronary flow reserve in women with chest pain and angiographically normal coronary arteries. Atherosclerosis 2009; 204(2): 580– 505. doi: 10.1016/ j.atherosclerosis.2008.09.038.
30. Hajsadeghi F, Nabavi V, Bhandari A et al. Increased epicardial adipose tissue is associated with coronary artery disease and major adverse cardiovascular events. Atherosclerosis 2014; 237(2): 486– 489. doi: 10.1016/ j.atherosclerosis.2014.09.037.
31. Wang TJ, Parise H, Levy D et al. Obesity and the risk of new-onset atrial fibrillation. JAMA 2004; 292(20): 2471– 2477. doi: 10.1001/ jama.292.20.2471.
32. Fox CS, Massaro JM, Hoffmann U et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007; 116(1): 39– 48. doi: 10.1161/ CIRCULATIONAHA.106.675355.
33. Wong CX, Sun MT, Odutayo A et al. Associations of epicardial, abdominal, and overall adiposity with atrial fibrillation. Circ Arrhythm Electrophysiol 2016; 9(12): pii: e004378. doi: 10.1161/ CIRCEP.116.004378.
34. Chen PS, Chen LS, Fishbein MC et al. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ Res 2014; 114(9): 1500– 1515. doi: 10.1161/ CIRCRESAHA.114.303772.
35. Frustaci A, Chimenti C, Bellocci F et al. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation 1997; 96(4): 1180– 1184.
36. Aviles RJ, Martin DO, Apperson-Hansen C et al. Inflammation as a risk factor for atrial fibrillation. Circulation 2003; 108(24): 3006– 3010. doi: 10.1161/ 01.CIR.0000103131.70301.4F.
37. Malouf JF, Kanagala R, Al Atawi FO et al. High sensitivity c-reactive protein: a novel predictor for recurrence of atrial fibrillation after successful cardioversion. J Am Coll Cardiol 2005; 46(7): 1284– 1287. doi: 10.1016/ j.jacc.2005.06.053.
38. Venteclef N, Guglielmi V, Balse E et al. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur Heart J 2015; 36(13): 795– 805. doi: 10.1093/ eurheartj/ eht099.
39. Boixel C, Fontaine V, Rücker-Martin C et al. Fibrosis of the left atria during progression of heart failure is associated with increased matrix metalloproteinases in the rat. J Am Coll Cardiol 2003; 42(2): 336– 344. doi: 10.1016/ S0735-1097(03)00578-3.
40. Iacobellis G, Leonetti F, Singh N et al. Relationship of epicardial adipose tissue with atrial dimensions and diastolic function in morbidly obese subjects. Int J Cardiol 2007; 115(2): 272– 273. doi: 10.1016/ j.ijcard.2006.04.016.
41. Wong CX, Stiles MK, John B et al. Direction-dependent conduction in lone atrial fibrillation. Heart Rhythm 2010; 7(9): 1192– 1199. doi: 10.1093/ europace/ eur42842.
42. Mahajan R, Lau DH, Brooks AG et al. Electrophysiological, electroanatomical, and structural remodeling of the atria as consequences of sustained obesity. J Am Coll Cardiol 2015; 66(1): 1– 11. doi: 10.1016/ j.jacc.2015.04.058.
43. Nakahara S, Toratani N, Nakamura H et al. Spatial relationship between high-dominant-frequency sites and the linear ablation line in persistent atrial fibrillation: its impact on complex fractionated electrograms. Europace 2013; 15(2): 189– 197. doi: 10.1093/ europace/ eus290.
44. Nakagawa H, Scherlag BJ, Patterson E et al. Pathophysiologic basis of autonomic ganglionated plexus ablation in patients with atrial fibrillation. Hear Rythm 2009; 6 (12 Suppl): S26– S34. doi: 10.1016/ j.hrthm.2009.07.029.
45. Pokushalov E, Kozlov B, Romanov A et al. Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery. Circ Arrhythm Electrophysiol 2015; 8(6): 1334– 1341. doi: 10.1161/ CIRCEP.115.003199.
46. Khawaja T, Greer C, Chokshi A et al. Epicardial fat volume in patients with left ventricular systolic dysfunction. Am J Cardiol 2011; 108(3): 397– 401. doi: 10.1016/ j.amjcard.2011.03.058.
47. Doesch C, Haghi D, Flüchter S et al. Epicardial adipose tissue in patients with heart failure. J Cardiovasc Magn Reson 2010; 12: 40. doi: 10.1186/ 1532-429X-12-40.
48. Tabakci MM, Durmuş Hİ, Avci A et al. Relation of epicardial fat thickness to the severity of heart failure in patients with nonischemic dilated cardiomyopathy. Echocardiography 2015; 32(5): 740– 748. doi: 10.1111/ echo.12796.
49. Mookadam F, Goel R, Alharthi MS et al. Epicardial fat and its association with cardiovascular risk: a cross-sectional observational study. Heart Views 2010; 11(3): 103– 108. doi: 10.4103/ 1995-705X.76801.
50. Karayannis G, Giamouzis G, Tziolas N et al. Association between epicardial fat thickness and weight homeostasis hormones in patients with noncachectic heart failure. Angiology 2013; 64(3): 173– 180. doi: 10.1177/ 0003319712447978.
51. Nagaya N, Moriya J, Yasumura Y et al. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation 2004; 110(24): 3674– 3679. doi: 10.1161/ 01.CIR.0000149746.62908.BB.
52. Papotti M, Ghè C, Cassoni P et al. Growth hormone secretagogue binding sites in peripheral human tissues. J Clin Endocrinol Metab 2000; 85(10): 3803– 3807. doi: 10.1210/ jcem.85.10.6846.
53. Iacobellis G, Singh N, Wharton S et al. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity (Silver Spring) 2008; 16(7): 1693– 1697. doi: 10.1038/ oby.2008.251.
54. Gaborit B, Jacquier A, Kober F et al. Effects of bariatric surgery on cardiac ectopic fat: lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content. J Am Coll Cardiol 2012; 60(15): 1381– 1389. doi: 10.1016/ j.jacc.2012.06.016.
55. Park JH, Park YS, Kim YJ et al. Effects of statins on the epicardial fat thickness in patients with coronary artery stenosis underwent percutaneous coronary intervention: comparison of atorvastatin with simvastatin/ ezetimibe. J Cardiovasc Ultrasound 2010; 18(4): 121– 126. doi: 10.4250/ jcu.2010.18.4.121.
56. Soucek F, Covassin N, Singh P et al. Effects of atorvastatin (80 mg) therapy on quantity of epicardial adipose tissue in patients undergoing pulmonary vein isolation for atrial fibrillation. Am J Cardiol 2015; 116(9): 1443– 1446. doi: 10.1016/ j.amjcard.2015.07.067.
57. Jonker JT, Lamb HJ, van der Meer RW et al. Pioglitazone compared with metformin increases pericardial fat volume in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010; 95(1): 456– 460. doi: 10.1210/ jc.2009-1441.
58. Lima-Martínez MM, Paoli M, Rodney M et al. Effect of sitagliptin on epicardial fat thickness in subjects with type 2 diabetes and obesity: a pilot study. Endocrine 216; 51(3): 448– 455. doi: 10.1007/ s12020-015-0710-y.
59. Morano S, Romagnoli E, Filardi T et al. Short-term effects of glucagon-like peptide 1 (GLP-1) receptor agonists on fat distribution in patients with type 2 diabetes mellitus: an ultrasonography study. Acta Diabetol 2015; 52(4): 727– 732. doi: 10.1007/ s00592-014-0710-z.
Labels
Paediatric cardiology Internal medicine Cardiac surgery CardiologyArticle was published in
Cardiology Review
2018 Issue 3
Most read in this issue
- Perindopril and cardiovascular disease – 25 years of success in cardiology
- Hypothyroidism and the heart
- Gestational diabetes mellitus and possibilities for its treatment
- Commented shortened version of the 2018 ESC Guidelines for the diagnosis and management of syncope