Nízký HDL-cholesterol: Jak to vlastně je?
Authors:
Martin Šatný; Michal Vrablík
Authors‘ workplace:
Centrum preventivní kardiologie, III. interní klinika – endokrinologie a metabolismu 1. LF UK a VFN v Praze
Published in:
AtheroRev 2021; 6(3): 147-152
Category:
Reviews
Overview
Kauzální působení LDL-cholesterolu (LDL-C) v genezi a progresi aterosklerotických cévních lézí je zcela neoddiskutovatelné a podložené robustní evidencí z řady klinických studií. Role HDL-cholesterolu (HDL-C), resp. HDL-částic je opředena řadou kontroverzí, a tak HDL-C přestává být obecně považován za ateroprotektivní, tj. „dobrý cholesterol“. Recentní data naznačují, že pouze u jedinců bez anamnézy manifestního aterosklerotického kardiovaskulárního (KV) onemocnění (ASKVO) jsou nízké koncentrace HDL-C nepřímo spojeny s rizikem budoucích KV-příhod. Tento vztah však zdaleka neplatí pro pacienty s metabolickým syndromem či manifestním ASKVO. Zcela zásadní je si uvědomovat rozdíl mezi HDL-C a HDL-částicemi, jež jako takové plní řadu funkcí. Měření HDL-C často pozbývá významu, jelikož nedává žádnou informaci právě o kvalitě HDL-částic, která je zcela klíčová v kontextu jejich aterogenity, resp. ateroprotektivity. Stran posouzení KV-rizika tedy sehrává HDL-C poněkud nejednoznačnou úlohu a stále častěji je debatováno jeho klinické využití. Detekce nízkých koncentrací HDL-C by spíše měla vést k vyšetření dalších metabolických či zánětlivých patologických stavů. Pilíř terapie nízkého HDL-C tvoří režimová opatření – zanechání kouření či pravidelná pohybová aktivita; farmakoterapie obecně doporučována není.
Klíčová slova:
režimová opatření – LDL-cholesterol – HDL-cholesterol – aterosklerotická KVO – KV-riziko
Úvod, epidemiologie
Skutečnost, že HDL-cholesterol (HDL-C), resp. HDL-částice, mohou primárně chránit před ischemickou chorobou srdeční (ICHS), pochází z epidemiologických studií zdravé populace, zejména pak Framinghamské studie. Opakovaně bylo také dokumentováno, že u pacientů s manifestní aterosklerózou bývá přítomna nízká hladina HDL-C [1]. Vztah mezi HDL-C a kardiovaskulárním (KV) rizikem však není zcela lineární: zlepšení prognózy sledovaných již není patrné u HDL-C > 1,5 mmol/l. Dále z retrospektivních analýz studií EPIC Norfolk či IDEAL víme, že velmi vysoké koncentrace HDL-C mohou být asociovány dokonce se zvýšeným rizikem rozvoje či manifestace aterosklerózy [2]. Zajímavá data týkající se problematiky ideálních hladin HDL-C přinesla studie populace více než 1 milionu amerických veteránů; analýzou dat byla získána U-křivka (vztah HDL-C a celkové mortality), nejnižší hodnota s nejnižší mortalitou představovala HDL-C 1,25 mmol/l [3]. Post hoc analýza Framinghamské studie podpořila skutečnost, že prediktivní hodnota HDL-C je modifikována LDL-cholesterolem (LDL-C) a triglyceridy (TG), přičemž izolované zvýšení LDL-C či TG > 2,6 mmol/l zvyšuje KV-riziko přibližně o 30 %. V případě zvýšení jak LDL-C, tak TG na hodnoty > 2,6 mmol (za předpokladu nízkého HDL-C), může docházet až 60% nárůstu KV-rizika [4].
Stručně řečeno, nízký HDL-C je spíše indikátorem zvýšeného KV-rizika, a to především u osob bez anamnézy manifestní KV-příhody. V každém případě je epidemiologický vztah mezi HDL-C a KV-rizikem velmi složitý.
Snížené koncentrace HDL-C často vznikají za dalších „proaterogenních“ podmínek – přítomnost zánětu, zvýšení koncentrace na TG bohatých lipoproteinových částic, jejich remnantů či malých denzních LDL-částic.
Na tomto místě je také nutno podotknout, že výpočet aterogenního indexu může být zcela zavádějící a jeho běžné využití se nedoporučuje, jelikož jeho hodnoty mohou být v kontextu vysokého HDL-C (často neseného i kvalitativně tangovanými částicemi) falešně uspokojivé [5].
Prevalence nízkého HDL-C se různí jednak napříč kontinenty, jednak v kontextu přítomnosti dílčích rizikových faktorů ASKVO, respektive metabolického syndromu (MS) či jeho složek. V literatuře jsou uváděny hodnoty od jednotek po desítky procent, ve zmíněné populaci pacientů s MS může být prevalence až 50 % [6].
Metabolizmus HDL-C, resp. HDL-částic
HDL-částice představují nejmenší (5–17 nm) lipoproteinové částice s nejvyšší hustotou (1 063–1 210 kg/dm3), jejichž základní komponentu tvoří apolipoprotein A1 (apoA1) syntetizovaný v játrech a tenkém střevě.
Cholesterol je z těla vylučován buď přímo, nebo po přeměně na žlučové kyseliny. Přebytek cholesterolu je transportován z tkání (např. z makrofágů cévní stěny) do jater, přičemž právě HDL-částice sehrávají v této cestě klíčovou roli, známou jako reverzní transport cholesterolu (RCT). Valná většina HDL-C měřeného v krvi však pochází z jater a střev; nelze proto použít jako měřítko efluxu cholesterolu ze stěny cév, resp. účinnosti RCT [1].
RCT je velmi komplexním mechanizmem, který začíná přenosem cholesterolu na úrovni buněčné membrány. Literárně jsou popisovány 4 (pato)-fyziologické cesty RCT:
- Pokud je obsah cholesterolu v buňce normální, více než dvě třetiny neesterifikovaného cholesterolu opouštějí buňky pasivní difúzí dle koncentračního gradientu mezi buněčnou membránou a nejlépe velkou (globulární) HDL-částicí. Tento koncentrační gradient se udržuje extracelulární esterifikací volného cholesterolu prostřednictvím lecitin-cholesterol-acyltransferázy (LCAT).
- Pasivní eflux neesterifikovaného cholesterolu se zvyšuje upregulací ATP vázajícího kazetového transportéru G1 (ABCG1), a dochází tak k mobilizaci cholesterolu z intracelulárních kompartmentů.
- Pasivní přenos volného cholesterolu z buněk může být dále zprostředkován scavengerovým receptorem třídy B typu 1 (SR-B1), kdy SR-B1 nepodporuje pouze eflux cholesterolu z buněk, ale také „selektivní“ dodávání cholesterolu z HDL-částic do jaterních buněk [1,7].
- Cholesterol a fosfolipidy z makrofágů/pěnových buněk se aktivně přenášejí pomocí ATP kazetových transportérů A1 (ABCA1) na lipidy prosté pre-β-HDL-částice obsahující apoA1. Tento proces je klíčový pro tvorbu tzv. nascentních (diskoidních) HDL-částic, které obsahují apoA1, fosfatidylcholin a neesterifikovaný cholesterol. Význam ABCA1 pro „metabolické zrání“ HDL-částic byl identifikován díky objasnění genetické příčiny tangierské choroby [8,9]. Exprese ABCA1 je regulována intracelulárním obsahem cholesterolu a jeho eflux zprostředkovaný právě ABCA1 je důležitý v situacích jeho nadbytku uvnitř buněk. Tok cholesterolu mezi buňkami a HDL-částicemi závisí na koncentračním gradientu mezi buňkou a akceptorovými lipoproteinovými částicemi. Tento gradient je zachován díky hydrolýze esterů cholesterolu a jeho následnou translokací extracelulárně pomocí LCAT a cholesterol-ester-transfer proteinu (CETP). LCAT esterifikuje volný cholesterol (např. z pre-β-HDL) s mastnou kyselinou lecitinu. Estery cholesterolu jsou více hydrofobní než volný cholesterol, proto jsou také deponovány uvnitř HDL-částic, čímž dochází k jejich transformaci z diskoidních na sférické (tzv. pseudomicelární) partikule – α-HDL-částice. Maturace HDL-částic bývá narušena primárním či sekundárním deficitem LCAT, u pacientů s familiárním nedostatkem LCAT sférické HDL-částice zcela chybí. CETP je hydrofobní glykoprotein vylučovaný především játry, jehož základní funkcí je usnadnění přenosu esterů cholesterolu, TG a v menší míře také fosfolipidů mezi HDL-, LDL- a VLDL-částicemi. Tedy estery cholesterolu jsou tak zapojeny do metabolizmu LDL-partikulí a mohou být dodávány do jater [10].
HDL-částicím je dále připisována role protizánětlivá či antioxidační; podílejí se také na zlepšení endoteliální dysfunkce [6].
Souhrnně lze konstatovat, že HDL-částice sehrávají klíčovou roli v RCT (mechanizmus ateroprotektivity HDL-částic) a jeho vylučování, jakkoli měření HDL-C vůbec neodráží jejich funkci v tomto procesu.
Problematika HDL-C/HDL-částic
V současnosti je HDL-C stanovován především tzv. „homogenními“ metodami, které umožnují jeho měření v jedné reakční směsi bez nutnosti předchozí separace. Principem těchto metod je „maskování“ cholesterolu v non-HDL-částicích protilátkami, polymery či detergenty, následované enzymatickým stanovením HDL-C. Komerčně dodávané kity vykazují uspokojivou shodu s referenčními metodami (několikafázová separace VLDL-, LDL-částic s následným enzymatickým stanovením HDL-C), a to jak u normo-, tak hypercholesterolemických pacientů. Na tomto místě je ale třeba zmínit dvě skutečnosti. Stanovení HDL-C není ovlivněno předchozí konzumací jídla, proto jej lze spolehlivě hodnotit i postprandiálně, avšak u pacientů s těžší hypertriglyceridemií, velmi nízkým HDL-C či s atypickými lipoproteiny (např. u pacientů s familiární dysbetalipoproteinemií) mohou být přítomny rozdíly ve srovnání s metodou referenční [1].
Kromě prostého stanovení hladiny HDL-C máme k dispozici i metody hodnotící funkčnost HDL-částic, např. pomocí nukleární magnetické rezonance (NMR) rozlišující velikost a hustotu HDL-částic, měřením v nich obsažených proteinů (apo A1, sérový amyloid A) či in vitro kapacity absorpce cholesterolu v buňce [11–15]. Dosud se však jedná o metody běžně nedostupné; tyto jsou využívané především v rámci experimentu.
Aktuální klinicky dostupné metody jsou sice schopny relativně přesně stanovit HDL-C v odpovídajících lipoproteinových částicích, avšak pro jejich funkční hodnocení jsou možnosti velmi limitované [5,6].
Nejen genetická determinace HDL-C
Dle analýz dánských a amerických populačních studií má až 10 % jedinců s HDL-C < 5. percentilem heterozygotní mutace v genech pro apoA1, ABCA1 nebo LCAT [16,17]. Evidence v oblasti rizika rozvoje aterosklerózy v této populaci je rozporuplná. U některých mutací apoA1 byla zaznamenána asociace s vyšším rizikem infarktu myokardu (IM) [1], přičemž jiná mutace – apoA1-Milano může riziko dokonce snížit. Dle velké dánské populační studie nebyla heterozygotní forma mutací genu ABCA1 nebo apoA1 spojována s vyšším rizikem IM. Data z nizozemských studií současně naznačují zvýšené KV riziko při mutacích v genech pro apoA1, ABCA1 nebo LCAT. Naopak italské práce nenalezly žádné důkazy o zvýšeném KV-riziku u heterozygotních nosičů mutací LCAT [18–20].
Pro přehlednost jsou dopady homozygotních či heterozygotních mutací v genech pro apoA1, ABCA1 a LCAT uvedeny v tab. 1.
Riziko rozvoje aterosklerotických cévních lézí se u nosičů diskutovaných mutací dle dosavadních zdrojů buď nezvyšuje vůbec či jen mírně, a to nejspíše v důsledku toho, že HDL-částice mohou přímo do jater transportovat také volný cholesterol.
Mutace genu ABCA1 v homozygotní konstelaci vede k již zmíněné tangierské chorobě, která je mimo jiné charakterizována často nízkou hladinu LDL-C, což může atenuovat eventuální aterogenní dopady nízké koncentrace HDL-C. Homozygotní nonsense mutace v apoA1 genu byly detekovány u pacientů s těžkou xantomatózou a časnou manifestací aterosklerózy [1,5].
Typicky bývá ve vztahu ke zvýšenému KV-riziku diskutována problematika genetické determinace nízkých hladin HDL-C, jakkoli k alteraci KV-rizika může docházet i naopak, tj. v případě vysokých koncentrací HDL-C, např. u pacientů s CETP deficiencí (nejčastěji pozorováno v japonské populaci). Dosud není jasné, zda HDL-C, resp. HDL-částice vzniklé právě nedostatkem (či farmakologickou inhibicí) CETP mají zachovalou normální funkci. Výsledky studií sledujících právě vztah CETP a HDL-C dokumentovaly zvýšenou KV-mortalitu při nízkých koncentracích CETP navzdory vysokému HDL-C [21].
Za zmínění jistě stojí také mutační analýzy scavengerového receptoru (SR-B1): ty jsou spojeny jak s významným zvýšením HDL-C, tak i KV-rizika [22–24]. U myšího modelu vedla nadměrná exprese SR-B1 k nárůstu RCT (navzdory poklesu HDL-C); jeho nedostatek naopak zapříčinil vzestup hladin HDL-C. HDL-částice však byly hodnoceny jako aterogenní [1]. Genetická diskuse o HDL-C je zcela v rozporu s genetickými faktory determinujícími LDL-C, protože monogennní (familiární hypercholesterolemie) i polygenní faktory zvyšující LDL-C vždy vedou ke shodným změnám KV-rizika (pozitivní mendeliánská randomizace), což v případě HDL-C jistě neplatí [25,26].
Obecně lze shrnout, že genetická data nepodporují koncept obecně ochranné role HDL-C ve vztahu k ASKVO.
Ve srovnání s geneticky podmíněnými abnormalitami metabolizmu HDL-C nacházíme nízký HDL-C mnohem častěji u pacientů s metabolickým syndromem nebo diabetes mellitus (spíše 2. typu), v těchto případech se hovoří o tzv. aterogenní dyslipidemii. Nízký HDL-C je dále asociován s akutními či chronickými systémovými záněty, kouřením cigaret či chronickým onemocněním ledvin [5,27]. Zjištění nízké koncentrace HDL-C by tedy mimo jiné mělo vést i k úvaze o vyšetření eventuální metabolické či „zánětlivé“ patologie u daného jedince.
Pokles hladin HDL-C je také popisován jako nežádoucí účinek řady léčiv, která jsou názorně uvedena v tab. 2. Na tomto místě zmiňme zajímavou skutečnost, že podávání fenofibrátu (především mikronizované formy) může vzácně vést k paradoxnímu (velmi výraznému) poklesu HDL-C; patogenetický mechanizmus je však nejasný [28].
Možnosti ovlivnění HDL-C
Základem léčebné intervence jsou samozřejmě režimová opatření – zanechání kouření, redukce tělesné hmotnosti, vhodná dieta či omezení příjmu alkoholu. Změnou životního stylu lze docílit nejen zvýšení HDL-C, ale také snížení KV-rizika (avšak není známo, zda tyto konsekvence podmiňuje právě změna HDL-C). Ovlivnění metabolizmu lipoproteinových částic je velmi komplexní; dochází ke změnám nejen jejich kvantity, ale také kvality. Svou roli sehrává současný pozitivní dopad režimových opatření na inzulinovou rezistenci jako stěžejního patofyziologického děje vedoucího k manifestaci aterogenní dyslipidemie [5].
Dopady dílčích režimových opatření na hladiny HDL-C jsou pro přehlednost uvedeny v tab. 3.
Je nutno připomenout, že HDL-C je považován pouze za marker/indikátor KV-rizika a není tedy primárním léčebným cílem, tím zůstává samozřejmě LDL-C dle kategorie KV-rizika. Na trhu dostupná hypolipidemika cílí tedy především na jeho hladiny, potažmo na hladiny TG, jakkoli koncentrace HDL-C mohou být těmito léčivy taktéž pozitivně ovlivněny.
Statiny
Statiny kompetitivně inhibují enzym hydroxy-metyl-koenzym A reduktázu, která je zodpovědná za endogenní syntézu cholesterolu, což v konečném důsledku vede k poklesu hladin zejména LDL-C. Při léčbě statiny jsou dále popisovány klesající hladiny TG a mírný nárůst HDL-C. Avšak je spíše nepravděpodobné, že by toto zvýšení HDL-C významně přispívalo k redukci KV-rizika vyplývajícího z léčby statiny [5].
Fibráty
Fibráty řadíme k agonistům jaderných PPARα-receptorů; jejich podávání vede k nárůstu hladiny HDL-C stimulací exprese apoA1, ABCA1, SR-B1 či lipoproteinové lipázy (LPL).
Metaanalýza 18 prospektivních randomizovaných studií dospěla k závěru, že fibráty snižují relativní riziko (RR) výskytu závažných KV-příhod o 10 %, resp. RR progrese albuminurie o 14 % [29]. Opět není jasně deklarovatelné, zda jsou klinické účinky fibrátů podmíněny primárně zvýšením HDL-C, nebo spíše poklesem TG či LDL-C. Navíc u diabetiků léčených statiny nebyl dokumentován žádný dodatečný benefit užití fibrátů v redukci KV-rizika [5].
CETP inhibitory
CETP zprostředkovává výměnu cholesterolu a TG mezi různými lipoproteinovými částicemi, čímž sehrává klíčovou roli v RCT [30,31]. Koncept inhibice CETP vychází z pozorování jedinců s částečnou nebo úplnou deficiencí tohoto enzymu, u nichž je detekován nejen vysoký HDL-C, ale i komplexně pozitivní dopad na celý lipidový profil.
Výsledky dostupných studií jsou velmi rozporuplné. Na jedné straně stojí pacienti s geneticky sníženými koncentracemi CETP a mírně sníženým rizikem ASKVO. Na druhou stranu v mnoha pracích testujících inhibitory CETP výsledky poukazovaly na inverzní korelaci mezi hladinou CETP a KV-rizikem [31–37].
Prospektivní studie s CETP inhibitory musely být ukončeny předčasně, a to z důvodu zvýšené mortality, resp. nedostatečné účinnosti podávaného léčiva [1,5].
V oblasti léčebné intervence lze tedy konstatovat, že zcela zásadní je stratifikace KV-rizika a na něj navazující režimová, resp. farmakologická opatření, která však cílí primárně na LDL-C a TG, nikoliv na HDL-C.
Intervence vedoucí ke zvýšení HDL-C představuje především změnu životního stylu – zanechání kouření a pravidelnou fyzickou aktivitu [5].
V současnosti nejsou k dispozici data, která by podporovala užití statinů či kombinace statinu a fibrátu k ovlivnění hladin HDL-C, tj. ovlivnění hladin HDL-C není v současné době důvodem k farmakologické intervenci (jakkoli dostupná hypolipidemika mohou jeho hladiny více či méně ovlivňovat) [1,5].
Pár slov závěrem
Zvýšení HDL-C prostřednictvím režimových opatření má jistě pozitivní dopady (spíše vyplývající z nonHDL-C) a obecně je doporučeno. Ze studií hodnotících potenciál HDL-C jako terapeutického cíle nevyplynulo, že by k poklesu KV-rizika docházelo pouze změnou HDL-C nezávisle na změně dalších lipoproteinových částic či TG, tj. dospělo se k závěru, že HDL-C není farmakoterapeutickým cílem, ale spíše markerem vyššího KV-rizika. Je důležité si uvědomovat mnohotnost funkcí HDL-C, resp. HDL-částic, které plní celou řadu úloh – zejména zapojení do RCT, o jehož účinnosti však hladina HDL-C nedává žádnou informaci. Stále častěji se proto diskutuje klinický význam měření hladin HDL-C, které by optimálně měl nahradit jiný marker vlastností HDL částic – ten však zatím pro denní praxi nemáme. Definitivní jasno do celé problematiky musí přinést další výzkum v této oblasti.
MUDr. Martin Šatný | martin.satny@vfn.cz | www.vfn.cz
Doručeno do redakce | Doručené do redakcie | Received 15. 7. 2021
Přijato po recenzi | Prijaté po recenzii | Accepted 11. 8. 2021
Sources
- März W, Kleber ME, Scharnagl H et al. HDL cholesterol: reappraisal of its clinical relevance. Clin Res Cardiol 2017; 106(9): 663–675. Dostupné z: DOI: <http://dx.doi.org/10.1007/s00392–017–1106–1>.
- van der Steeg WA, Holme I, Boekholdt SM et al. High-density lipoprotein cholesterol, high-density lipoprotein particle size, and apolipoprotein A-I: significance for cardiovascular risk: the IDEAL and EPIC-Norfolk studies. J Am Coll Cardiol 2008; 51(6): 634–642. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.jacc.2007.09.060>.
- Bowe B, Xie Y, Xian H et al. High density lipoprotein cholesterol and the risk of all-cause mortality among US Veterans. Clin J Am Soc Nephrol 2016; 11(10): 1784–1793. Dostupné z: DOI: <http://dx.doi.org/10.2215/CJN.00730116>.
- Bartlett J, Predazzi IM, Williams SM et al. Is isolated low high-density lipoprotein cholesterol a cardiovascular disease risk factor? New insights from the Framingham offspring study. Circ Cardiovasc Qual Outcomes 2016; 9(3): 206–212. Dostupné z: DOI: <http://dx.doi.org/10.1161/CIRCOUTCOMES.115.002436>.
- Mach F, Baigent C, Catapano AL et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41(1): 111–188. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehz455>.
- Toth PP, Barylski M, Nikolic D et al. Should be low high-density lipoprotein cholesterol (HDL-C) treated? Best Pract Res Clin Endocrinol Metab 2014; 28(3): 353–368. Dostupné z DOI: <http://dx.doi.org/10.1016/j.beem.2013.11.002>.
- Phillips MC. Molecular mechanisms of cellular cholesterol efflux. J Biol Chem 2014; 289(35): 24020–24029. Dostupné z: DOI: <http://dx.doi.org/10.1074/jbc.R114.583658>.
- Bodzioch M, Orso E, Klucken J et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 1999; 22(4):347–351. Dostupné z: DOI: <http://dx.doi.org/10.1038/11914.>.
- Rust S, Rosier M, Funke H et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 1999; 22(4):352–355. Dostupné z: DOI: <http://dx.doi.org/10.1038/11921>.
- Quintao EC, Cazita PM. Lipid transfer proteins: past, present and perspectives. Atherosclerosis 2010; 209(1):1–9. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.atherosclerosis.2009.08.002>.
- Kaess B, Fischer M, Baessler A et al. The lipoprotein subfraction profile: heritability and identification of quantitative trait loci. J Lipid Res 2008; 49(4): 715–723. Dostupné z: DOI: <http://dx.doi.org/10.1194/jlr.M700338-JLR200>.
- Khera AV, Cuchel M, de la Llera-Moya M et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 2011; 364(2): 127–135. Dostupné z: DOI: <http://dx.doi.org/10.1056/NEJMoa1001689>.
- Rohatgi A, Khera A, Berry JD et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med 2014; 371(25): 2383–2393. Dostupné z: DOI: <http://dx.doi.org/10.1056/NEJMoa1409065>.
- Ritsch A, Scharnagl H, Marz W. HDL cholesterol efflux capacity and cardiovascular events. N Engl J Med 2014; 372(19): 1870–1871. Dostupné z: DOI: <http://dx.doi.org/10.1056/NEJMc1503139>.
- März W, Ritsch A. Cholesterol efflux capacity: choke point of reverse cholesterol traffic? J Am Coll Cardiol 2016; 67(21): 2488–2491. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.jacc.2016.04.005>.
- Schaefer EJ, Santos RD, Asztalos BF. Marked HDL deficiency and premature coronary heart disease. Curr Opin Lipidol 2010; 21(4): 289–297. Dostupné z: DOI: <http://dx.doi.org/10.1097/MOL.0b013e32833c1ef6>.
- von Eckardstein A. Differential diagnosis of familial high density lipoprotein deficiency syndromes. Atherosclerosis 2006; 186(2): 231–239. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.atherosclerosis.2005.10.033>.
- Tietjen I, Hovingh GK, Singaraja R et al. Increased risk of coronary artery disease in Caucasians with extremely low HDL cholesterol due to mutations in ABCA1, APOA1, and LCAT. 2012. Biochim Biophys Acta 2012; 1821(3): 416–424. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.bbalip.2011.08.006>.
- Frikke-Schmidt R. Genetic variation in the ABCA1 gene, HDL cholesterol, and risk of ischemic heart disease in the general population. Atherosclerosis 2010; 208(2): 305–316. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.atherosclerosis.2009.06.005>.
- Haase CL, Frikke-Schmidt R, Nordestgaard BG et al. Population-based resequencing of APOA1 in 10,330 individuals: spectrum of genetic variation, phenotype, and comparison with extreme phenotype approach. PLoS Genet 2012; 8(11): e1003063. Dostupné z: DOI: <http://dx.doi.org/10.1371/journal.pgen.1003063>.
- Ritsch A, Scharnagl H, Eller P et al. Cholesteryl ester transfer protein and mortality in patients undergoing coronary angiography: the Ludwigshafen Risk and Cardiovascular Health study. Circulation 2010; 121(3): 366–374. Dostupné z: DOI: <http://dx.doi.org/10.1161/CIRCULATIONAHA.109.875013>.
- Vergeer M, Korporaal SJ, Franssen R et al. Genetic variant of the scavenger receptor BI in humans. N Engl J Med 2011; 364(2): 136–145. Dostupné z: DOI: <http://dx.doi.org/10.1056/NEJMoa0907687>.
- Ljunggren SA, Levels JH, Hovingh K et al. Lipoprotein profiles in human heterozygote carriers of a functional mutation P297S in scavenger receptor class B1. Biochim Biophys Acta 2015; 1851(12): 1587–1595. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.bbalip.2015.09.006>.
- Zanoni P, Khetarpal SA, Larach DB et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science 2016; 351(6278): 1166–1171. Dostupné z: DOI: <http://dx.doi.org/10.1126/science.aad3517>.
- Voight BF, Peloso GM, Orho-Melander M et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomization study. Lancet 2012; 380(9841): 572–580. Dostupné z: DOI: <http://dx.doi.org/10.1016/S0140–6736(12)60312–2>.
- Ference BA, Majeed F, Penumetcha R et al. Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2 × 2 factorial Mendelian randomization study. J Am Coll Cardiol 2015; 65(15): 1552–1561. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.jacc.2015.02.020>.
- Taskinen MR, Boren J. New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis 2015; 239(2): 483–495. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.atherosclerosis.2015.01.039>.
- Šatný M, Vrablík M. Sekundární dyslipidemie. AtheroRev 2017; 2(3): 162–168.
- Jun M, Foote C, Lv J et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet 2010; 375(9729): 1875–1884. Dostupné z: DOI: <http://dx.doi.org/10.1016/S0140–6736(10)60656–3>.
- Fielding CJ, Fielding PE. Molecular physiology of reverse cholesterol transport. J Lipid Res 1995; 36(2): 211–228.
- Tall AR. Plasma cholesteryl ester transfer protein. J Lipid Res 1993; 34(8): 1255–1274.
- Johannsen TH, Frikke-Schmidt R, Schou J et al. Genetic inhibition of CETP, ischemic vascular disease and mortality, and possible adverse effects. J Am Coll Cardiol 2012; 60(20): 2041–2048. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.jacc.2012.07.045>.
- Li YY, Wu XY, Xu J et al. Apo A5 -1131 T/C, FgB – 455G/A, -148C/T, and CETP TaqIB gene polymorphisms and coronary artery disease in the Chinese population: a meta-analysis of 15,055 subjects. Mol Biol Rep 2013; 40(2): 1997–2014. Dostupné z: DOI: <http://dx.doi.org/10.1007/s11033–012–2257–9>.
- Niu W, Qi Y. Circulating cholesteryl ester transfer protein and coronary heart disease: Mendelian randomization meta-analysis. Circ Cardiovasc Genet 2015; 8(1): 114–121. Dostupné z: DOI: <http://dx.doi.org/10.1161/CIRCGENETICS.114.000748>.
- Hovingh GK, Ray KK, Boekholdt SM. Is cholesteryl ester transfer protein inhibition an effective strategy to reduce cardiovascular risk? CETP as a target to lower CVD risk: suspension of disbelief? 2015. Circulation 2015; 132(5):433–440. Dostupné z: DOI: <http://dx.doi.org/10.1161/CIRCGENETICS.114.000748>.
- Brousseau ME, Schaefer EJ, Wolfe ML et al. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N Engl J Med 2004; 350(15): 1505–1515. Dostupné z: DOI: <http://dx.doi.org/10.1056/NEJMoa031766>.
- Kastelein JJ. Refocusing on use of cholesteryl ester transfer protein inhibitors. Am J Cardiol 2007; 100(11 A): n47-n52. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.amjcard.2007.08.013>.
Labels
Angiology Diabetology Internal medicine Cardiology General practitioner for adultsArticle was published in
Athero Review
2021 Issue 3
Most read in this issue
- Low HDL-cholesterol: How it actually is?
- Familial hypercholesterolemia: news
- Combination of statin and ezetimibe: most often in only one pill and for more patients
- Genetics of familial hypercholesterolemia: updated criteria for LDLR gene variant interpretation