Insulin resistance, hyperglycemia and protein catabolism in the critically ill: looking for keys of the locked door
Authors:
B. Bakalář 1,2; R. Zajíček 2; F. Duška 1
Authors‘ workplace:
Klinika anesteziologie a resuscitace 3. lékařské fakulty Univerzity Karlovy a Fakultní nemocnice Královské Vinohrady Praha
1; Klinika popáleninové medicíny 3. lékařské fakulty Univerzity Karlovy a Fakultní nemocnice Královské Vinohrady Praha
2
Published in:
Anest. intenziv. Med., 31, 2020, č. 4, s. 176-183
Category:
Review Articles
Overview
Insulin resistance is a uniform reaction in critically ill patients. Its accompanying phenomena are hyperglycemia and protein catabolism, which are generally associated with deleterious effects on the body. The efforts to influence insulin resistance have so far been ineffective in critically ill patients. The aim of this work is to give an overview of the current state of knowledge about the causes and consequences of insulin resistance in critically ill patients and describe the current possibilities of influencing catabolic processes.
Keywords:
insulin resistance – hyperglycemia – critical illness – protein catabolism – metformin – illusory movements
Sources
1. Marik PE, Bellomo R. Stress hyperglycemia: an essential survival response! Crit Care 2013; 17: 305.
2. Falciglia M, Frezberg RW, Almenoff PL, D’Alessio DA, Render ML. Hyperglycemia-related mortality in critically ill patients varies with admission diagnosis. Crit Care Med 2009; 37: 3001–3009.
3. Bagshaw SM, Bellomo R, Jacka MJ, Egi M, Hart GK, George C, ANZICS CORE Management Committee. The impact of early hyperglycemia and blood glucose variability on outcome in critical illness. Crit Care 2009; 13: R91.
4. Salim A, Hadjizacharia P, Dubose J, Brown C, Inaba K, Chan LS, et al. Persistent hyperglycemia in severe traumatic brain injury: an independent predictor of outcome. Am Surg 2009; 75(1): 25–29.
5. Baker EH, Janaway CH, Philips BJ, Brennan AL, Baines DL, Wood DM, et al. Hyperglycemia is associated with poor outcomes in patients admitted to hospital with acute exacerbations of chronic obstructive pulmonary disease. Thorax 2006; 61(4): 284–289.
6. NICE-SUGAR Study Investigators, Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med 2009; 360: 1283–1297.
7. Chernow B, Rainey TG, Lake CR. Endogenous and exogenous catecholamines in critical care medicine. Crit Care Med 1982; 10: 409–416.
8. Boonen E, Vervenne H, Meersseman P, Andrew R, Mortier L, Declercq PE, et al. Reduced cortisol metabolism during critical illness. N Engl J Med. 2013; 368(16): 1477–1488.
9. Jernås M, Olsson B, Sjöholm K, Nellgård B, Carlsson LMS, Sjöström CD. Changes in adipose tissue gene expression and plasma levels of adipokines and acute-phase proteins in patients with critical illness. Metabolism 2009; 58(1): 102–108.
10. Raymond SL, Holden DC, Mira JC, Stortz JA, Loftus TJ, Mohr AM, et al. Microbial recognition and danger signals in sepsis and trauma. Biochim Biophys Acta Mol Basis Dis. 2017; 1863(10 Pt B): 2564–2573.
11. Petersen MC, Vatner DF, Shulman GI. Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol. 2017; 13(10): 572–587.
12. Yu YM, Tompkins RG, Ryan CM, Young VR. The metabolic basis of the increase in energy expenditure in severely burned patients. JPEN J Parenter Enteral Nutr. 1999; 23(3): 160–168.
13. Bakalar B, Hyspler R, Pachl J, Zadak Z. Changes in cholesterol and its precursors during the first days after major trauma. Wien Klin Wochenschr. 2003; 115(21–22): 775–779.
14. Porter C, Herndon DN, Børsheim E, Chao T, Reidy PT, Borack MS, et al. Uncoupled skeletal muscle mitochondria contribute to hypermetabolism in severely burned adults. Am J Physiol Endocrinol Metab. 2014; 307(5): E462–E467.
15. Wolfe RR, Herndon DN, Jahoor F, Miyoshi H, Wolfe M. Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med. 1987; 317(7): 403–408.
16. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014; 510(7503): 92–101.
17. Duvall MG, Levy BD. DHA- and EPA-derived resolvins, protectins, and maresins in airway inflammation. Eur J Pharmacol. 2015; 785: 144–155.
18. Singer M. Metabolic failure. Crit Care Med 2005; 33(12): S539–S542.
19. Jeschke MG, Gauglitz GG, Kulp GA, Finnerty CC, Williams FN, Kraft R, et al. Long-term persistance of the pathophysiologic response to severe burn injury. PLoS One. 2011; 6(7): e21245.
20. Guo S. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol 2014; 220(2): T1–T23.
21. Steinberg HO, Baron AD. Vascular function, insulin resistance and fatty acids. Diabetologia. 2002; 45(5): 623–634.
22. Vrhovac I, Brejlak D, Sabolić I. Glucose transporters in the mammalian blood cells. Periodicum Biologorum. 2014; 116(2): 61–131.
23. Vespa P, McArthur DL, Stein N, Huang S‑Ch, Shao W, Filippou M, et al. Tight glycemic control increases metabolic distress in traumatic brain injury: a randomized controlled within-subjects trial. Crit Care Med. 2012; 40(6): 1923–1929.
24. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979; 237(3): E214–E223.
25. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419.
26. Baldini, N, Avnet, S. The Effects of Systemic and Local Acidosis on Insulin Resistance and Signaling. Int J Mol Sci 2018; 20(1): 126–141.
27. Gual P, Le Marchand-Brustel Y, Tanti J. Positive and negative regulation of glucose uptake by hyperosmotic stress. Diabetes Metab. 2003; 29(6): 566–575.
28. Sookoian S, Pirola CJ. Epigenetics of insulin resistance: an emerging field in translational medicine. Curr Diab Rep 2013; 13(2): 229–237.
29. Svensson K, Handschin C. MicroRNAs emerge as modulators of NAD+-dependent energy metabolism in skeletal muscle. Diabetes 2014; 63(5): 1451–1453.
30. Hurrle S, Hsu WH. The etiology of oxidative stress in insulin resistance. Biomed J. 2017; 40(5): 257–262.
31. Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019; 38(1): 48–79.
32. Thomas SJ, Morimoto K, Herndon DN, Ferrando AA, Wolfe RR, Klein GL, et al. The effect of prolonged euglycemic hyperinsulinemia on lean body mass after severe burn. Surgery. 2002; 132(2): 341–347.
33. Assimacopoulos‑Jeannet F, Brichard S, Rencurel F, Cusin I, Jeanrenaud B. In vivo effects of hyperinsulinemia on lipogenic enzymes and glucose transporter expression in rat liver and adipose tissues. Metabolism. 1995; 44(2): 228–233.
34. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000; 348(Pt 3): 607–614.
35. Guigas B, Detaille D, Chauvin C, Batandier C, De Oliveira F, Fontaine E, et al. Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study. Biochem J. 2004; 382(Pt 3): 877–884.
36. Ouyang J, Isnard S, Lin J, Fombuena B, Marette A, Routy B, et al. Metformin effect on gut microbiota: insights for HIV‑ related inflammation. AIDS Res Ther. 2020; 17(1): 10.
37. DeFronzo R, Fleming GA, Chen K, Bicsak TA. Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism. 2016; 65(2): 20–29.
38. Gore DC, Herndon DN, Wolfe RR. Comparison of peripheral metabolic effects of insulin and metformin following severe burn injury. J Trauma. 2005; 59(2): 316–323.
39. Panahi Y, Mojtahedzadeh M, Zekeri N, Beiraghdar F, Khajavi MR, Ahmadi A. Metformin treatment in hyperglycemic critically ill patients: another challenge on the control of adverse outcomes. Iran J Pharm Res. 2011; 10(4): 913–919.
40. Jeschke MG, Abdullahi A, Burnett M, Rehou S, Stanojcic M. Glucose Control in Severely Burned Patients Using Metformin: An Interim Safety and Efficacy Analysis of a Phase II Randomized Controlled Trial. Ann Surg. 2016; 264(3): 518–527.
41. Cheng HS, Tan WR, Low ZS, Marvalim C, Lee JYH, Tan NS. Exploration and Development of PPAR Modulators in Health and Disease: An Update of Clinical Evidence. Int J Mol Sci. 2019; 20(20): 5055.
42. Cree MG, Zwetsloot JJ, Herndon DN, Qian T, Morio B, Fram R, et al. Insulin sensitivity and mitochondrial function are improved in children with burn injury during a randomized controlled trial of fenofibrate. Ann Surg. 2007; 245(2): 214–221.
43. Cree MG, Newcomer BR, Herndon DN, Qian T, Sun D, Morio B, et al. PPAR‑alpha agonism improves whole body and muscle mitochondrial fat oxidation, but does not alter intracellular fat concentrations in burn trauma children in a randomized controlled trial. Nutr Metab (Lond). 2007; 4: 9.
44. Takala J, Ruokonen E, Webster NR, Nielsen MS, Zandstra DF, Vundelinckx G, et al. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med. 1999; 341(11): 785–792.
45. Elijah IE, Branski LK, Finnerty CC, Herndon DN. The GH/IGF-1 system in critical illness. Best Pract Res Clin Endocrinol Metab. 2011; 25(5): 759–767.
46. Duska F, Fric M, Waldauf P, Pažout J, Anděl M, Mokrejš P, et al. Frequent intravenous pulses of growth hormone together with glutamine supplementation in prolonged critical illness after multiple trauma: effects on nitrogen balance, insulin resistance, and substrate oxidation. Crit Care Med. 2008; 36(6): 1707–1713.
47. Critical evaluation of the safety of recombinant human growth hormone administration: statement from the Growth Hormone Research Society. J Clin Endocrinol Metab. 2001; 86(5): 1868–1870.
48. Froesch ER, Schmid C, Schwander J, Zapf J. Actions of insulin‑like growth factors. Annu Rev Physiol. 1985; 47: 443–467.
49. Mesotten D, Van den Berghe G. Changes within the growth hormone/insulin‑ like growth factor I/IGF binding protein axis during critical illness. Endocrinol Metab Clin North Am. 2006; 35(4): 793–805.
50. Frysak Z, Schovanek J, Iacobone M, Karasek D. Insulin‑ like Growth Factors in a clinical setting: Review of IGF‑ I. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015; 159(3): 347–351.
51. Herndon DN, Rodriguez NA, Diaz EC, Hegde S, Jennings K, Mlcak RP, et al. Long‑term propranolol use in severely burned pediatric patients: a randomized controlled study. Ann Surg. 2012; 256(3): 402–411.
52. Manzano‑Nunez R, García‑Perdomo HA, Ferrada P, Ordoñez Delgado CA, Gomez DA, Foianini JE. Safety and effectiveness of propranolol in severely burned patients: systematic review and meta‑analysis. World J Emerg Surg. 2017; 12: 11.
53. Bentley C, Hazeldine J, Greig C, Lord J, Foster M. Dehydroepiandrosterone: a potential therapeutic agent in the treatment and rehabilitation of the traumatically injured patient. Burns Trauma. 2019; 7: 26.
54. Almoosa KF, Gupta A, Pedroza C, Watts NB. Low Testosterone Levels are Frequent in Patients with Acute Respiratory Failure and are Associated with Poor Outcomes. Endocr Pract. 2014; 20(10): 1057–1063.
55. Ferrando AA, Sheffield‑Moore M, Wolf SE, Herndon DN, Wolfe RR. Testosterone administration in severe burns ameliorates muscle catabolism. Crit Care Med. 2001; 29(10): 1936–1942.
56. Li H, Guo Y, Yang Z, Roy M, Guo Q. The efficacy and safety of oxandrolone treatment for patients with severe burns: A systematic review and meta‑analysis. Burns. 2016; 42(4): 717–727.
57. Anstey M, Desai S, Torre L, Wibrow B, Seet J, Osnain E. Anabolic Steroid Use for Weight and Strength Gain in Critically Ill Patients: A Case Series and Review of the Literature. Case Rep Crit Care. 2018; 2018: 4545623.
58. Fliers E, Bianco AC, Langouche L, Boelen A. Thyroid function in critically ill patients. Lancet Diabetes Endocrinol. 2015; 3(10): 816–825.
59. Bloise FF, Oliveira TS, Cordeiro A, Ortiga‑Carvalho TM. Thyroid Hormones Play Role in Sarcopenia and Myopathies. Front Physiol. 2018; 9: 560.
60. Burtin C, Clerckx B, Robbeets C, Patrick Ferdinande, Daniel Langer, Thierry Troosters, et al. Early exercise in critically ill patients enhances short‑term functional recovery. Crit Care Med. 2009; 37(9): 2499–2505.
61. Kortebein P, Ferrando A, Lombeida J, Wolfe R, Evans WJ. Effect of 10 days of bed rest on skeletal muscle in healthy older adults. JAMA. 2007; 297(16): 1772–1774.
62. Truong AD, Fan E, Brower RG, Needham DM. Bench‑to‑bedside review: mobilizing patients in the intensive care unit--from pathophysiology to clinical trials. Crit Care. 2009; 13(4): 216.
63. Herridge MS, Chu LM, Matte A, Tomlinson G, Chan L, Thomas C, et al. The RECOVER Program: Disability Risk Groups and 1-Year Outcome after 7 or More Days of Mechanical Ventilation. Am J Respir Crit Care Med. 2016; 194(7): 831–844.
64. Hermans G, Van Mechelen H, Clerckx B, Vanhullebusch T, Mesotten D, Wilmer A, et al. Acute outcomes and 1-year mortality of intensive care unit‑acquired weakness. A cohort study and propensity‑matched analysis. Am J Respir Crit Care Med. 2014; 190(4): 410–420.
65. Ruhl AP, Huang M, Colantuoni E, Lord RK, Dinglas VD, Chong A, et al. Healthcare Resource Use and Costs in Long‑Term Survivors of Acute Respiratory Distress Syndrome: A 5-Year Longitudinal Cohort Study. Crit Care Med. 2017; 45(2): 196–204.
66. Needham DM, Wang W, Desai SV, Mendez‑Tellez PA, Dennison CR, Sevransky J, et al. Intensive care unit exposures for long‑term outcomes research: development and description of exposures for 150 patients with acute lung injury. J Crit Care. 2007; 22(4): 275–284.
67. Llano‑Diez M, Renaud G, Andersson M, Marrero HG, Cacciani N, Engquist H, et al. Mechanisms underlying ICU muscle wasting and effects of passive mechanical loading. Crit Care. 2012; 16(5): R209.
68. Williams N, Flyn M. A review of the efficacy of neuromuscular electrical stimulation in critically ill patients. Physiother Theory Pract. 2014; 30(1): 6–11.
69. Bailey P, Thomsen GE, Spuhler VJ, Blair R, Jewkes J, Bezdjian L, et al. Early activity is feasible and safe in respiratory failure patients. Crit Care Med. 2007; 35(1): 139–145.
70. Dantas CM, Silva PFS, Siqueira FHT, Pinto RMF, Matias S, Maciel C, et al. Influence of early mobilization on respiratory and peripheral muscle strength in critically ill patients. Rev Bras Ter Intensiva. 2012; 24(2): 173–178.
71. Waldauf P, Jiroutková K, Krajčová A, Puthucheary Z, Duška F. Effects of Rehabilitation Interventions on Clinical Outcomes in Critically Ill Patients: Systematic Review and Meta‑Analysis of Randomized Controlled Trials [published online ahead of print, 2020 Apr 28]. Crit Care Med. 2020; 10.1097/CCM.0000000000004382.
72. Gosselink R, Bott J, Johnson M, Dean E, Nava S, Norrenberg M, et al. Physiotherapy for adult patients with critical illness: recommendations of the European Respiratory Society and European Society of Intensive Care Medicine Task Force on Physiotherapy for Critically Ill Patients. Intensive Care Med. 2008; 34(7): 1188–1199.
73. TECHNO CONCEPT. Vibramoov – Always in motion. Mane - France, 2018 [online]. Dostupné z: http://pdf.medicalexpo.com/pdf/techno-concept/vibramoov/77870-153443.html.
74. Holubářová J, Pavlů D. Proprioceptivní neuromuskulární facilitace. 3. vydání. Praha: Univerzita Karlova, nakladatelství Karolinum, 2017.
75. Roll R, Kavounoudias A, Albert F, R Legré, A Gay, B Fabre, et al. Illusory movements prevent cortical disruption caused by immobilization. NeuroImage. 2012; 62(1): 510–519.
Labels
Anaesthesiology, Resuscitation and Inten Intensive Care MedicineArticle was published in
Anaesthesiology and Intensive Care Medicine
2020 Issue 4
Most read in this issue
- Tranexamová kyselina
- Hypoxia and hypercapnia – how do the chemoreceptors work?
- Audit of antibiotic prophylaxis in surgery
- Insulin resistance, hyperglycemia and protein catabolism in the critically ill: looking for keys of the locked door