Current techniques of continuous non-invasive monitoring of arterial blood pressure
Authors:
Beneš Jan; Šimanová Alena; Kasal Eduard
Authors‘ workplace:
Anesteziologicko-resuscitační klinika, Fakultní nemocnice Plzeň
Published in:
Anest. intenziv. Med., 25, 2014, č. 3, s. 222-230
Category:
Intensive Care Medicine - Review Article
Overview
Blood pressure is one of the most important parameters monitored in anaesthesia and intensive care medicine. Two possibilities of automatic blood pressure monitoring are at hand in contemporary practice: intermittent measurements obtained via an oscillometric cuff or continuous monitoring based on arterial catheterisation. In recent years novel technologies have been developed enabling continuous non-invasive monitoring of blood pressure. This review article describes the two most developed of these technologies: the volume clamp method and appalanation tonometry. Devices based on these principles might in near future help to significantly improve patients’ safety and quality of care.
Keywords:
blood pressure monitoring – non-invasive technologies – volume clamp – applanation tonometry
Sources
1. ASA House of Delegates STANDARDS FOR BASIC ANESTHETIC MONITORING. [online] 2011 [cit.2013-07-12]. Dostupný na www: http://www.asahq.org/For-Members/~/media/For%20Members/documents/Standards%20Guidelines%20Stmts/Basic%20Anesthetic%20Monitoring%202011.ashx.
2. Cvachovec, K., Černý, V., Herold, I., Kozlík, P., Šturma, J. Zásady bezpečné anesteziologické péče. [online] 2012 [cit.2013-07-12]. Dostupný na www: http://www.csarim.cz/Public/csim/22%20%20DP_safety_anesth_CSARIM_final_approval_140212.pdf.
3. Sy, W. P. Ulnar nerve palsy possibly related to use of automatically cycled blood pressure cuff. Anesth. Analg., 1981, 60, p. 687–688.
4. Bause, G. S., Weintraub, A. C., Tanner, G. E. Skin avulsion during oscillometry. J. Clin. Monit., 1986, 2, p. 262–263.
5. Cannesson, M., Pestel, G., Ricks, C., Hoeft, A., Perel, A. Hemodynamic monitoring and management in patients undergoing high risk surgery: a survey among North American and European anesthesiologists. Crit. Care, 2011, 15, R197.
6. Scheer, B., Perel, A., Pfeiffer, U. J. Clinical review: complica-tions and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit. Care, 2002, 6, p. 199–204.
7. Lamia, B., Chemla, D., Richard, C., Teboul, J. L. Clinical review: interpretation of arterial pressure wave in shock states. Crit. Care, 2005, 9, p. 601–606.
8. Montenij, L. J., de Waal, E. E. C., Buhre, W. F. Arterial waveform analysis in anesthesia and critical care. Curr. Opin. Anaesthesiol., 2011, 24, p. 551–556.
9. O‘Brien, E. et al. Working Group on Blood Pressure Monitoring of the European Society of Hypertension International Protocol for validation of blood pressure measuring devices in adults. Blood Press Monit, 2002, 7, p. 3–17.
10. Pickering, T. G. et al. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension, 2005, 45, p. 142–161.
11. Marey, E. Pression et vitesse du sang. Physiologie Expe-rimentale, 1876.
12. Drzewiecki, G., Hood, R., Apple, H. Theory of the oscillometric maximum and the systolic and diastolic detection ratios. Ann. Biomed. Eng., 1994, 22, p. 88–96.
13. Smulyan, H., Safar, M. E. Blood pressure measurement: retrospective and prospective views. American Journal of Hypertension, 2011, 24, p. 628–634.
14. Marks, L. A., Groch, A. Optimizing cuff width for noninvasive measurement of blood pressure. Blood Press Monit., 2000, 5, p. 153–158.
15. Avolio, A. P., Butlin, M., Walsh, A. Arterial blood pressure measurement and pulse wave analysis-their role in enhancing cardiovascular assessment. Physiol. Meas., 2010, 31, R1-47.
16. Penaz, J. Photoelectric measurement of blood pressure, volume and flow in the finger. In Digest of the 10th International Conference on Medical and Biological Engineering , Dresden
17. Wesseling, K. A century of noninvasive arterial pressure measurement: from Marey to Penaz and Finapres. Homeostasis., 1995, p. 2–3.
18. Ilies, C. et al. Investigation of the agreement of a continuous non-invasive arterial pressure device in comparison with invasive radial artery measurement. Br. J. Anaesth., 2012, 108, p. 202–210.
19. Wesseling, K. H., de Wit, B., van der Hoeven, G. M. A., van Goudoever, J., Settels, J. Physiocal, calibrating finger vascular physiology for Finapres. Homeostasis, 1995, 36, p. 67–82.
20. Gizdulich, P., Prentza, A., Wesseling, K. H. Models of brachial to finger pulse wave distortion and pressure decrement. Cardiovasc. Res., 1997, 33, p. 698–705.
21. Fischer, M. O. et al. Non-invasive continuous arterial pressure and cardiac index monitoring with Nexfin after cardiac surgery. Br. J. Anaesth., 2012, 109, p. 514–521.
22. Martina, J. R. et al. Noninvasive continuous arterial bloodpressure monitoring with Nexfin®. Anesthesiology, 2012, 116, p. 1092–1103.
23. Garnier, R. P., van der Spoel, A. G. E., Sibarani-Ponsen, R., Markhorst, D. G., Boer, C. Level of agreement between Nexfin non-invasive arterial pressure with invasive arterial pressure measurements in children. Br. J. Anaesth., 2012, 109, p. 609–615.
24. Lemson, J. et al. The reliability of continuous noninvasive finger blood pressure measurement in critically ill children. Anesth. Analg., 2009, 108, p. 814–821.
25. Hofhuizen, C. M. et al. Continuous non-invasive finger arterial pressure monitoring reflects intra-arterial pressure changes in children undergoing cardiac surgery. Br. J. Anaesth., 2012, 105, p. 493–500.
26. Stover, J. F. et al. Noninvasive cardiac output and bloodpressure monitoring cannot replace an invasive monitoring system in critically ill patients. BMC Anesthesiology, 2009, 9, 6.
27. Hohn, A. et al. Non-invasive continuous arterial pressure monitoring with Nexfin(R) does not sufficiently replace invasive measurements in critically ill patients. Br. J. Anaesth., 2013, 111, p. 178–184.
28. Akkermans, J. et al. Continuous Non-Invasive Blood Pressure Monitoring, a Validation Study of Nexfin in a Pregnant Population. Hypertension in Pregnancy, 2009, 28, p. 230–242.
29. Nowak, R. M. et al. Noninvasive continuous or intermittent blood pressure and heart rate patient monitoring in the ED. Am. J. Emerg. Med., 2011, 29, p. 782–789.
30. Eeftinck Schattenkerk, D. W. et al. Nexfin noninvasive continuous blood pressure validated against Riva-Rocci/Korotkoff. American journal of hypertension, 2009, 22, p. 378–383.
31. ANSI/AAMI American National Standard for Manual, Electronic, or Automated Sphygmomanometers. In, Arlington, VA.
32. Bur, A. et al. Accuracy of oscillometric blood pressure measurement according to the relation between cuff size and upper-arm circumference in critically ill patients. Crit. Care Med., 2000, 28, p. 371–376.
33. Wesseling, K. H., Jansen, J. R., Settels, J. J., Schreuder, J. J.Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J. Appl. Physiol., 1993, 74, p. 2566–2573.
34. Truijen, J., van Lieshout, J. J., Wesselink, W. A., Wester-hof, B. E. Noninvasive continuous hemodynamic monitoring.J. Clin. Monit. Comput., 2012, 26, p. 267–278.
35. Fischer, M. O. et al. Assessment of changes in cardiac index and fluid responsiveness: a comparison of Nexfin and transpulmonary thermodilution. Acta Anaesthesiol. Scand., 2013, 57, p. 704–712.
36. Monnet, X. et al. The estimation of cardiac output by the Nexfin device is of poor reliability for tracking the effects of a fluid challenge. Crit. Care, 2012, 16, R212.
37. Broch, O. et al. A comparison of the Nexfin® and transcardiopulmonary thermodilution to estimate cardiac output during coronary artery surgery. Anaesthesia, 2012, 67, p. 377–383.
38. Trinkmann, F. et al. Is arterial pulse contour analysis using Nexfin a new option in the noninvasive measurement of cardiac output? A pilot study. J. Cardiothorac. Vasc. Anesth., 2013, 27, p. 283–287.
39. van der Spoel, A. G. E., Voogel, A. J., Folkers, A., Boer, C., Bouwman, R. A. Comparison of noninvasive continuous arterial waveform analysis (Nexfin) with transthoracic Doppler echocardiography for monitoring of cardiac output. J. Clin. Anesth., 2012, 24, p. 304–309.
40. Chen, G. et al. Comparison of noninvasive cardiac output measurements using the Nexfin monitoring device and the esophageal Doppler. J. Clin. Anesth., 2012, 24, p. 275–283.
41. Bogert, L. W. J. et al. Pulse contour cardiac output derived from non-invasive arterial pressure in cardiovascular disease. Anaesthesia, 2010, 65, p. 1119–1125.
42. Critchley, L. A., Critchley, J. A. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J. Clin. Monit. Comput., 1999, 15, p. 85–91.
43. Lansdorp, B. et al. Non-invasive measurement of pulsepressure variation and systolic pressure variation using a finger cuff corresponds with intra-arterial measurement. Br. J. Anaesth., 2011, 107, p. 540–545.
44. Fortin, J. et al. Continuous non-invasive blood pressure monitoring using concentrically interlocking control loops. Comput. Biol. Med., 2006, 36, p. 941–957.
45. Biais, M. et al. Continuous non-invasive arterial pressure measurement: evaluation of CNAP device during vascular surgery. Ann. Fr. Anesth. Reanim., 2010, 29, p. 530–535.
46. Jeleazcov, C. et al. Precision and accuracy of a new device (CNAPTM) for continuous non-invasive arterial pressure monitoring: assessment during general anaesthesia. Br. J. Anaesth., 2010, 105, p. 264–272.
47. Gayat, E. et al. CNAP(®) does not reliably detect minimal or maximal arterial blood pressures during induction of anaesthesia and tracheal intubation. Acta Anaesthesiol. Scand., 2013, 57, p. 468–473.
48. Hahn, R., Rinösl, H., Neuner, M., Kettner, S. C. Clinical validation of a continuous non-invasive haemodynamic monitor (CNAP 500) during general anaesthesia. Br. J. Anaesth., 2012, 108, p. 581–585.
49. Biais, M. et al. The ability of pulse pressure variations obtained with CNAP™ device to predict fluid responsiveness in the operating room. Anesth. Analg., 2011, 113, p. 523–528.
50. Monnet, X. et al. Prediction of fluid responsiveness by a continuous non-invasive assessment of arterial pressure in critically ill patients: comparison with four other dynamic indices. Br. J. Anaesth., 2012, 109, p. 330–338.
51. Ilies, C. et al. Detection of hypotension during Caesarean section with continuous non-invasive arterial pressure device or intermittent oscillometric arterial pressure measurement. Br. J. Anaesth., 2012, 109, p. 413–419.
52. Jagadeesh, A. M., Singh, N. G., Mahankali, S. A comparison of a continuous noninvasive arterial pressure (CNAP™) monitor with an invasive arterial blood pressure monitor in the cardiac surgical ICU. Ann. Card. Anaesth., 2012, 15, p. 180–184.
53. Kako, H., Corridore, M., Rice, J., Tobias, J. D. Accuracy of the CNAP™ monitor, a noninvasive continuous blood pressure device, in providing beat-to-beat blood pressure readings in pediatric patients weighing 20–40 kilograms. Paediatr. Anaesth., 2013.
54. Dueck, R., Goedje, O., Clopton, P. Noninvasive continuous beat-to-beat radial artery pressure via TL-200 applanation tonometry. J. Clin. Monit. Comput., 2012, 26, p. 75–83.
55. Saugel, B. et al. The T-Line TL-200 system for continuous non-invasive blood pressure measurement in medical intensive care unit patients. Intensive Care Med., 2012, 38, p. 1471–1477.
56. Szmuk, P., Pivalizza, E., Warters, R. D., Ezri, T., Gebhard, R. An evaluation of the T-Line Tensymeter continuous noninvasive blood pressure device during induced hypotension. Anaesthesia, 2008, 63, p. 307–312.
57. Janelle, G. M., Gravenstein, N. An accuracy evaluation of the T-Line Tensymeter (continuous noninvasive blood pressure mana-gement device) versus conventional invasive radial artery monitoring in surgical patients. Anesth. Analg., 2006, 102, p. 484–490.
58. Meidert, A. S. et al. Evaluation of the radial artery applanation tonometry technology for continuous noninvasive blood pressure monitoring compared with central aortic blood pressure measurements in patients with multiple organ dysfunction syndrome.J. Crit. Care, 2013.
59. Chen, W., Kobayashi, T., Ichikawa, S., Takeuchi, Y., Toga-wa, T. Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration. Med. Biol. Eng. Comput., 2000, 38, p. 569–574.
60. Ahlstrom, C., Johansson, A., Uhlin, F., Länne, T., Ask, P. Noninvasive investigation of blood pressure changes using the pulse wave transit time: a novel approach in the monitoring of hemodialysis patients. J. Artif. Organs., 2005, 8, p. 192–197.
61. Ishihara, H. et al. The ability of a new continuous cardiac output monitor to measure trends in cardiac output following implementation of a patient information calibration and an automated exclusion algorithm. J. Clin. Monit. Comput., 2012, 26, p. 465–471.
Labels
Anaesthesiology, Resuscitation and Inten Intensive Care MedicineArticle was published in
Anaesthesiology and Intensive Care Medicine
2014 Issue 3
Most read in this issue
- Postdural puncture headache in obstetrics
- The importance of thromboelastography (TEG) and thrombelastometry (ROTEM) in the intensive care unit
- Bougie-assisted cricothyrotomy on an animal model – a pilot study
- Candid sepsis as a complication in a polytrauma patient