Immunotherapy of sepsis
Authors:
Průcha Miroslav 1; Černý Vladimír 2
Authors‘ workplace:
Oddělení klinické biochemie, hematologie a imunologie, Nemocnice Na Homolce, Praha
1; Klinika anesteziologie, resuscitace a intenzivní medicíny, Univerzita Karlova v Praze, Lékařská fakulta v Hradci Králové, Fakultní nemocnice Hradec Králové
2
Published in:
Anest. intenziv. Med., 21, 2010, č. 1, s. 23-30
Category:
Intensive Care Medicine - Review Article
Overview
A disorder of the immune mechanisms of innate and adaptive immunity, inadequate inflammatory response and/or immunoparalysis are the drivers of the search for an effective immunomodulatory treatment in septic patients. During the last 30 years various approaches have been tried without substantial effect. Immunomodulatory therapy involves anti-inflammatory treatment – with intravenous immunoglobulins, corticosteroids, therapy targeting the inflammatory cascade – cytokine inhibitors or inhibitors of Toll-like receptor mechanisms of recognition. On the other hand there is immunostimulatory therapy whose repertoire is significantly smaller – growth factors or leukocyte dialyzate. The current knowledge of the immunopathogenesis of sepsis shows the dominance of immunosuppression in septic patients. The promising results of using immunomodulatory therapy in experimental studies have not been confirmed in clinical trials. Immunotherapy of sepsis could represent the “magic bullet” that has not yet been found. This article summarizes the current knowledge and results of clinical trials on the immunotherapy of sepsis.
Keywords:
sepsis – immunity – immunosuppression – anti-inflammatory therapy – immunostimulation
Sources
1. Argus, D. C., Linde-Zwirble, W. T., Lidicker, J. et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med., 2001, 29, p. 1303–1310.
2. Černý, V., Novák, I., Šrámek, V. Prevalence těžké sepse v České republice – prospektivní multicentrická jednodenní studie. Anest. Intenziv. Med., 2003, 14, p. 218–222.
3. Hotchkiss, R. S., Karl, I. E. The pathophysiology and treatment of sepsis. N. Engl. J. Med., 2003, 348, p. 138–150.
4. Ziegler, E. J., McCutchan, J. A., Fierer, J., Glauser, M. P. et al. Treatment of gram-negative bacteremia and shock with human antiserum to a mutant Escherichia coli. N. Engl. J. Med., 1981, 307, p. 1225-1230.
5. Freeman, B. D., Natanson, C. Anti-inflammatory therapies in sepsis and septic shock. Expert Opin. Investig. Drugs, 2000, 9, p. 1651–1663.
6. Ziegler, E. J., Fisher, C. J. Jr., Sprung, C. L. et al. Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial. The HA-1A Sepsis Study Group. N. Engl. J. Med., 1991, 14, p. 429–436.
7. McCloskey, R. V., Straube, R. C., Sanders, C. et al. Treatment of septic shock with human monoclonal antibody HA-1A. A randomized, double-blind, placebo-controlled trial. CHESS Trial Study Group. Ann. Intern. Med. 1994, 121, p.1–5.
8. Koch, T., Helller, S., Weber, K. et al. Effekte von humanem i.v. Immunglobulin auf die Bakterien-Clearence und Granulozytenfunktion bei Endotoxinamie. Anasthesiol. Intensivmed. Notfallmed. Schmerzther., 1997, 32, p. 420–425.
9. Trautmann, M., Held, T. K., Susa, M. et al. Bacterial lipopolysaccharide (LPS)- specific antibodies in commercial human immunoglobulin preparations: superior antibody content of an IgM-enriched product. Clin. Exp. Immunol., 1998, 111, p. 81–90.
10. Wagner, D. R., Heinrich, D. Influence of polyclonal immunoglobulins on the polymorphonuclear leukocyte response to lipopolysaccharide of Salmonella enteritidis as measured with luminol-enhanced chemiluminiscence. Infect. Immun., 1994, 62, p. 4320–4324.
11. Menezes, M. C. S., Benard, G., Sato, M. N. et al. In vitro inhibitory activity of tumor necrosis factor alpha and interleukin--2 of human immunoglobulin preparations. Int. Arch. Allergy Immunol., 1997, 114, p. 323–328.
12. Kekow, J., Reinhold, D., Pap, T., Ansorge, S. Intravenous immunoglobulins and transforming growth factor b. Lancet, 1998, 351, p. 184–185.
13. Laupland, K. B., Kirkpatrick, A. W., Delaney, A. Polyclonal intravenous immunoglobulin for the treatment of severe sepsis and septic shock in critically ill adults: A systematic review and meta-analysis. Crit. Care Med., 2007, 35, p. 2686–2692.
14. Turgeon, A. F., Hutton, B., Fergusson, D. A. et al. Meta-analysis: intravenous immunoglobulin in critically ill adult patients with sepsis. Ann. Intern. Med., 2007, 146, p. 193–203.
15. Kreymann, K. G., de Heer, G., Nierhaus, A., Kluge, S. Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock. Crit. Care Med., 2007, 35, p. 2677–2685.
16. Werdan, K., Pilz, G., Bujdoso, O., Fraunberger, P. et al. Score-Based Immunoglobulin Therapy of Sepsis (SBITS) Study Group: Score-based immunoglobulin G therapy of patients with sepsis: the SBITS study. Crit. Care Med., 2007, 35, p. 2693–2701.
17. Dellinger, R. P., Levy, M. M., Carlet, J. M. et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septick shock: 2008. Crit. Care Med., 2008, 36, p. 296–326.
18. Fong, Y., Tracey, K. J., Moldawer, L. L. et al. Antibodies to cachectin/tumor necrosis factor reduce interleukin 1 beta and interleukin 6 appearance during lethal bacteremia. J. Exp. Med., 1989, 170, p. 1627–1633.
19. Remick, D. G., Larrick, J., Kunkel, S. L. Tumor necrosis factor-induced alterations in circulating leukocyte populations. Biochem. Biophys. Res. Commun., 1986, 141, p. 818–824.
20. Tracey, K. J., Beutler, B., Lowry, S. F. et al. Shock and tissue injury induced by recombinant human cachectin. Science, 1986, 234, p. 470– 474.
21. Tracey, K. J., Fong, Y., Hesse, D. G., Manogue, K. R. et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature,1987, 330, p. 662–664.
22. Arndt, P., Abraham, E. Immunological therapy of sepsis: experimental therapies. Int. Care Med., 2001, 27, Suppl 1: p. 104–115.
23. Lorente, J. A., Marshall, J. C. Neutralization of tumor necrosis factor in preclinical models of sepsis. Shock, 2005, 24, Suppl 1, p. 107–119.
24. Stashenko, P., Dewhirst, F. E., Peros, W. J., Kent, R. L., Ago, J. M. Synergistic interactions between interleukin 1, tumor necrosis factor, and lymphotoxin in bone resorption. J. Immunol., 1987, 138, p. 1464–1468.
25. Waage, A., Espevik, T. Interleukin 1 potentiates the lethal effect of tumor necrosis factor alpha/cachectin in mice. J. Exp. Med., 1988, 167, p.1987–1992.
26. Fisher, C. J. Jr., Slotman, G. J., Opal, S. M. et al. IL-1RA Sepsis Syndrome Study Group. Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: a randomized, open-label, placebo-controlled multicenter trial. Crit. Care Med., 1994, 22, p. 12–21.
27. Fisher, C. J. Jr., Dhainaut, J. F., Opal, S. M. et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group. JAMA, 1994, 271, p. 1836–1843.
28. Opal, S. M., Fisher, C. J. Jr., Dhainaut, J. F. et al. Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group. Crit. Care Med., 1997, 25, p. 1115–1124.
29. Eichacker, P. Q., Parent, C., Kalil, A. et al. Risk and the efficacy of antiinflammatory agents: retrospective and confirmatory studies of sepsis. Am. J. Respir. Crit. Care Med., 2002, 166, p. 1197–1205.
30. Echtenacher, B., Urbaschek, R., Weigl, K. et al. Treatment of experimental sepsis-induced immunoparalysis with TNF. Immunobiology, 2003, 208, p. 381–389.
31. Bongartz, T., Sutton, A. J., Sweeting, M. J., et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA, 2006, 295, p. 2275–2285.
32. Wallis, R. S. Infectious complications of tumor necrosis factor blockade. Curr. Opin. Infect. Dis., 2009, 22, p. 403– 409.
33. Beutler, B. Inferences, questions and possibilities in toll-like receptor signaling. Nature, 2004, 430, p. 257–263.
34. Levitz, S. M. Interactions of Toll-like receptors with fungi. Microbes Infect., 2004, 6, p. 1351–1355.
35. Takeda, K. Evolution and integration of innate immune recognition systems: the Toll-like receptors. J. Endotoxin Res., 2005, 11, p. 51–55.
36. Ulevitch, R. J. Therapeutics targeting the innate immune system. Nat. Rev. Immunol., 2004, 4, p. 512–520.
37. Doyle, S. L., O’Neill, L. A. Toll-like receptors: from the discovery of NF kappaB to new insights into transcriptional regulations in innate immunity. Biochem. Pharmacol., 2006, 72, p. 1102–1113 .
38. Bosshart, H., Heinzelmann, M. Targeting bacterial endotoxin: two sides of a coin. Ann. N. Y. Acad. Sci., 2007, 1096, p. 1–17 .
39. Wendel, M., Paul, R., Heller, A. L. Lipoproteins in inflammation and sepsis. II. Clinical aspects. Int. Care Med., 2007, 33, p. 25–35.
40. Czeslick, E., Struppert, A., Simm, A., Sablotzki, A. E5564 (Eritoran) inhibits lipopolysaccharide-induced cytokine production in human blood monocytes. Inflamm. Res., 2006, 55, p. 511–515.
41. Kaneko, K., Ueda, R., Kawata, T. et al. LPS binding protein does not participate in the pharmacokinetics of E5564. J. Endotoxin Res., 2004, 10, p. 185–189.
42. De Bosscher, K., Van den Berghe, W., Haegeman, G. The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for gene repression. Endocr. Rev., 2003, 24, p. 488–522.
43. McKay, L. I., Cidlowski, J. A. Molecular control of immune/inflammatory responses: interactions between nuclear factor-kappa B and steroid receptor-signaling pathways. Endocr. Rev., 1999, 20, p. 435–459.
44. Hebbar, P. B., Archer, T. K. Chromatin remodeling by nuclear receptors. Chromosoma, 2003, 111, p. 495–504.
45. Nagaich, A. K., Rayasam,G. V., Martinez, E. D. et al. Subnuclear trafficking and gene targeting by steroid receptors. Ann. N. Y. Acad. Sci., 2004, 1024, p. 13–20.
46. Hafezi-Moghadam, A., Simonini, T., Yang, Z. et al. Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat. Med., 2002, 8, p. 473–479.
47. Cato, A. C., Nestl, A., Mink, S. Rapid actions of steroid receptors in cellular signaling pathways. Sci. STKE, 2002, 138, RE9.
48. Bone, R. C., Fischer, C. J. Jr, Clemmer, T. P. et al. Early methylprednisolone treatment for septic syndrome and the adult respiratory distress syndrome. Chest, 1987, 92, p. 1032–1036.
49. Cronin, L., Cook, D. J., Carlet, J. et al. Corticosteroid treatment for sepsis: a critical appraisal and meta-analysis of the literature. Crit. Care Med.,1995, 23, p. 1430–1439.
50. Annane, D., Seville, V., Charpentier, C. et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA, 2002, 288, p. 862–871.
51. Sprung, C. L., Annane, D., Keh, D. et al. CORTICUS Study Group. Hydrocortisone therapy for patients with septic shock. N. Engl. J. Med., 2008, 358, p. 111–124.
52. Bauer,W., Ball, J., Grounds, M. Unanswered questions from Corticus and pragmatic suggestions. Crit. Care, 2008, 12, p. 426.
53. Marik, P.E. Critical illness-related corticosteroid insufficiency. Chest, 2009, 135, p. 181–193.
54. Mason, P. E., Al-Khafaji, A., Milbrandt, E. B. et al. CORTICUS: The end of unconditional love for steroid use? Crit. Care, 2009, 13, p. 309.
55. Ertel, W., Kremer, J. P., Kenney, J. et al. Downregulation of proinflammatory cytokine release in whole blood from septic patients. Blood, 1995, 85, p. 1341–1347.
56. Majetschak, M., Krehmeier, U., Bardenheuer, M. et al. Extracellular ubiquitin inhibits the TNF-alpha response to endotoxin in peripheral blood mononuclear cells and regulates endotoxin hyporesponsiveness in critical illness. Blood, 2003, 101, p. 1882–1890.
57. Sedláčková, L., Průcha, M., Dostál, M. Imunologické monitorování sepse průtokovou cytometrií – kvantitativní stanovení exprese HLA-DR na monocytech a CD64 na granulocytech. Epidemiol. Mikrobiol. Imunol., 2005, 54, s. 54–61.
58. Decker, D., Schondorf, M., Bidlingmaier, F. et al. Surgical stress induces a shift in the type-1/type-2 T-helper cell balance, suggesting down-regulation of cell-mediated and up-regulation of antibody-mediated immunity commensurate to trauma. Surgery, 1996, 19, p. 316–325.
59. Dadák, L., Štouračová, M., Štětka, P., Kuklínek, P., Šrámek, V. Rozšířený imunologický profil v prvních dnech pobytu a prognóza nemocných dlouhodobě hospitalizovaných na JIP. Anest. Intenziv. Med., 2007, 18, s. 164–169.
60. Průcha, M., Zazula, R., Kavka, B., Hyánek, J. Imunoparalýza a infekční komplikace u kriticky nemocných. Anest. neodklad. Péče, 2001, 12, s. 320–323.
61. Nelson, S., Belknap, S. M., Carlson, R. W. et al. A randomized controlled trial of filgrastim as an adjunct to antibiotics for treatment of hospitalized patients with community-acquired pneumonia. CAP Study Group. J. Infect. Dis., 1998, p. 1781075–1781080.
62. Root, R. K., Lopato, R. F., Patrick, W. et al. Pneumonia Sepsis Study Group. Multicenter, double-blind, placebo-controlled study of the use of filgrastim in patients hospitalized with pneumonia and severe sepsis. Crit. Care Med., 2003, 31, p. 367–673.
63. Sevansky, J. E., Parent, C., Cui, X. et al. Granulocyte colony-stimulating factor has differing effects comparing intravascular versus extravascular models of sepsis. J. Trauma, 2004, 57, p. 618–625.
64. Karzai, W., von Specht, B. U., Parent, C. et al. G-CSF during Escherichia coli versus Staphylococcus aureus pneumonia in rats has fundamentally different and opposite effects. Am. J. Respir. Crit. Care Med., 1999, 159, p. 1377–1382.
65. Presneill, J. J., Hartus, T., Stewart, A. G. et al. A randomized phase II trial of granulocyte-macrophage colony-stimulating factor therapy in severe sepsis with respiratory dysfunction. Am. J. Respir. Crit. Care Med., 2002, 166, p. 138–143.
66. Rosenbloom, A. J., Linden, P. K., Dorrance, A. et al. Effect of granulocyte-monocyte colony-stimulating factor therapy on leukocyte function and clearance of serious infection in nonneutropenic patients. Chest, 2005, 127, p. 2139–2150.
67. Orozco, H., Arch, J., Medina-Franco, H. et al. Molgramostim (GM-CSF) associated with antibiotic treatment in nontraumatic abdominal sepsis: a randomized, double-blind, placebo- -controlled clinical trial. Arch. Surg., 2006, 141, p. 150–153.
68. Neosel, C., Schefold, J. C., Pschowski, R. et al.GM-CSF to Reverse Sepsis-associated Immunosuppression: A Double-blind Randomized Placebo-controlled Multicenter Trial. Am. J. Respir. Crit. Care Med., 2009. doi:10.1164/rccm.200903- -0363OC.
69. Biotin, K., Yaramiş, A., Naspílat, K. et al. A randomized trial of granulocyte-macrophage colony-stimulating factor in neonates with sepsis and neutropenia. Pediatrics, 2001, 107, p. 36–41.
70. Carr, R., Modi, N., Doré, C. G-CSF and GM-CSF for treating or preventing neonatal infections. Cochrane Database Syst. Rev., 2003, 3, CD003066.
71. Carr, R., Brocklehurst, P., Doré, C. J., Modi, N. Granulocyte-macrophage colony stimulating factor administered as prophylaxis for reduction of sepsis in extremely preterm, small for gestational age neonates (the PROGRAMS trial): a single-blind, multicentre, randomised controlled trial. Lancet, 2009, 373, p. 226–233.
72. Sano, C., Sato, K., Shimizu, T. et al. The modulating effects of proinflammatory cytokines interferon-gamma (IFN-γ) and tumour necrosis factor-alpha (TNF-α), and immunoregulating cytokines IL-10 and transforming growth factor-beta (TGF-β), on anti-microbial activity of murine peritoneal macrophages against Mycobacterium avium-intracellulare complex. Clinical and Experimental Immunology, 1999, 115, p. 435–442.
73. Matsumura, H., Onozuka, K., Terada, Y. et al. Effect of murine recombinant interferon-gamma in the protection of mice against Salmonella. Int. J. Immunopharmacol., 1990, 12, p. 49–56.
74. Nakos, G., Malamou-Mitsi, V. D., Lachtana, A. et al. Immunoparalysis in patients with severe trauma and the effect of inhaled interferon-gamma. Crit. Care Med., 2002, 30, p. 1488–1494.
75. de Metz, J., Romijn, J. A., Endert, J. A. et al. Interferon- -gamma increases monocyte HLA-DR expression without effects on glucose and fat metabolism in postoperative Patiens. J. Appl. Physiol., 2004, 96, p. 597–603.
76. Johnston, G. R., Webester, N. R. Cytokines and the immunomodulatory function and the vagus nerve. Br. J. Anaesth., 2009, 102, p. 453–462.
77. Cabot, P. J. Immune derived opioid and peripheral antinociception. Clin. Exper. Pharmacol. Physiol, 2001, 28, p. 230–232.
78. Sharp, B. M., Roy, S., Bidlack, J. M. Evidence of opioid receptors on cells involved in hot defense and the immune system. J. Neuroimmunol., 1998, 83, p. 45–56.
79. Galley, H. F., Dubbels, A. M., Webster, N. R. The effect of midazolam and propofol in interleukin-8 fdrom human polymorphonuclear leukocytes. Anesth. Analg, 1998, 86, p. 1289–1293.
80. Wesche-Soldato, D. E., Chung, C. S., Lomas-Neira, J. et al. In vivo delivery of caspase-8 or Fas siRNA improves the survival of septic mice. Blood, 2005, 106, p. 2295–301.
81. Yang, H., Ochani, M., Li, J. et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc. Natl. Acad. Sci. U S A, 2004, 101, p. 296–301.
82. Ulloa, L., Ochani, M., Yang, H. et al. Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc. Natl. Acad. Sci. U S A, 2002, 99, p. 12351–12356.
83. Kaneider, N. C., Agarwal, A., Leger, A. J,, Kuliopulos, A. Reversing systemic inflammatory response syndrome with chemokine receptor pepducins. Nat. Med. , 2005, 11, p. 661–665.
84. Reutershan, J., Stockton, R., Zarbock, A. et al. Blocking p21-activated kinase reduces lipopolysaccharide-induced acute lung injury by preventing polymorphonuclear leukocyte infiltration. Am. J. Respir. Crit. Care Med., 2007, 175, p. 1027–1035.
85. Limane, A. P., Kirby, K. A., Rubenfeld, G. D. et al. Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA, 2008, 300, p. 413–422.
86. Luyt, C. E., Combes, A., Deback, C. et al. Herpes simplex virus lung infection in patients undergoing prolonged mechanical ventilation. Am. J. Respir. Crit. Care Med., 2007, 175, p. 935–942.
87. Kaufmann, I., Briegel, J., Schliephake, F. et al. Stress doses of hydrocortisone in septic shock: beneficial effects on opsonization-dependent neutrophil functions. Intensive Care Med., 2008, 34, p. 344–349.
88. Michálek, J., Světliková, P., Fedora, M. et al. Interleukin-6 gene variants and the risk of sepsis development in children. Hum. Immunol., 2007, 68, p. 756–760.
89. Průcha, M., Zazula, R., Peková, S. Genomic polymorphism and sepsis – is there a reason for optimism? Prague Med. Rep., 2008, 109, p. 113–126.
90. Suntharalingam, G., Perry, M. R., Ward, S. et al. Cytokine storm in a phase 1 trial of the anti- CD28 monoclonal antibody TGN1412. N. Engl. J. Med., 2006, 355, p. 1018–1028.
91. Monserrat, J., de Pablo, R., Prieto, A. et al. Using surface molecule expression on lymphocytes to classify septic shock patients. Crit. Care, 2009,13, p. 412.
92. Schwulst, S. J., Muenzer, J. T., Chany, K. C. et al. Lymphocyte phenotyping to distinguish septic from nonseptic critical illness. J. Am. Coll. Surg., 2008, 206, p. 335–342.
93. Holub, M., Klučková, Z., Helcl, M. et al. Lymphocyte subset numbers depend on the bacterial origin of sepsis. Clin. Microbiol. Infect., 2003, 9, p. 202–211.
94. Ayala, A., Lomas, J. L., Grutkoski, P. S., Chung, C. S. Pathological aspects of apoptosis in severe sepsis and shock? Int. J. Biochem. & Cell Biol., 2003, 35, p. 715–720.
95. Hotchkiss, R. S., Swanson, P. E., Freeman, B. D., Tinsley, K. et al. Apoptotic cell death in patients with sepsis, shock and multiple organ dysfunction. Crit. Care Med., 1999, 27, p. 1230–1251.
96. Wesche-Soldato, D. E., Stan, R. Z., Chung, CH. S., Ayala, A. The apoptotic pathway as a therapeutic target in sepsis. Curr. Drug Targets, 2007, 8, p. 493–500.
97. Schwulst, S. J., Muenzer, J. T., Peck-Palmer, O. M. et al. Bim siRNA decreases lymphocyte apoptosis and improves survival in sepsis. Shock, 2008, 30, p. 127–134.
98. Unsinger, J., McDonough, J. S., Shultz, L. D. et al. Sepsis-induced human lymphocyte apoptosis and cytokine production in “humanized” mice. J. Leukoc. Biol., 2009, 86, p. 219–227.
99. Šrámek, V., Dadák, L., Štouračová, M. et al. Immodin v léčbě imunoparalýzy nemocných v intenzivní péči. Vnitřní Lékařství, 2007, 53, s. 954–959.
100. Poehlmann, H., Schefold, J. C., Zuckermann-Becker, H. et al. Phenotype changes and impaired function of dendritic cell subsets in patients with sepsis: a prospective observational analysis. Crit. Care., 2009, 13, R119.
Labels
Anaesthesiology, Resuscitation and Inten Intensive Care MedicineArticle was published in
Anaesthesiology and Intensive Care Medicine
2010 Issue 1
Most read in this issue
- Osmotherapy in neurosurgery – hyperosmolar mannitol or hypertonic saline?
- Ultrasound guidance in regional anaesthesia and interventional pain management
- The development of paediatric anaesthesiology and intensive therapy in Prague
- Immunotherapy of sepsis