Role of the transforming growth factor (TGF)-β signal pathway in haematopoiesis and studies of new inhibitors of this pathway in the treatment of lower-risk myelodysplastic syndrome
Authors:
O. Fuchs; R. Bokorová
Authors‘ workplace:
Ústav hematologie a krevní transfuze, Praha
Published in:
Transfuze Hematol. dnes,25, 2019, No. 4, p. 310-318.
Category:
Review/Educational Papers
Overview
Transforming growth factor (TGF)-β is a cytokine originally named for its ability to transform normal fibroblasts in culture. TGF-β was subsequently found to inhibit growth of epithelial and lymphoid cells. The cellular response to TGF-β depends on the cell type and cell microenvironment. The TGF-β family includes TGF-β1, TGF-β2, TGF TGF-β3, activins A and B, nodal, myostatin, different growth differentiation factors (GDFs), the bone morphogenetic proteins (BMPs) and the anti-Műllerian hormone (AMH). More than thirty of these ligands use a far smaller number of receptors and down-stream intracellular signalling molecules. TGF-β receptor activation and phosphorylation is associated with the myelosuppression and ineffective erythropoiesis in myelodysplastic syndrome (MDS). Anaemia is the predominant cause of poor quality of life and morbidity in patients with lower-risk MDS (LR-MDS). Lenalidomide was approved only for the treatment of del(5q) MDS after failure of erythropoiesis stimulating agents (ESAs), also known as erythropoiesis stimulating proteins (ESPs). Other patients with LR-MDS have very limited therapy options after failure of ESPs and are dependent on red blood cell transfusions. Targeted inhibition of the TGF-β signalling pathway in preclinical and clinical studies showed promising results. Sotatercept and its later analogue luspatercept stimulated erythropoiesis in postmenopausal women with osteoporosis and were also efficient in a specific group of MDS patients with ring sideroblasts who had lost their response to ESPs. Luspatercept is the first TGF-β pathway inhibitor intended for the stimulation of late stage of erythroid differentiation and for the treatment of anaemia awaiting approval on the basis of promising results of phase III studies, namely MEDALIST in RL-MDS and BELIEVE in transfusion-dependent β-thalassemia.
Keywords:
erythropoietin – myelodysplastic syndrome – ring sideroblasts – anaemia – TGF-β signal pathway – growth differentiation factor 11 – sotatercept – luspatercept – galunisertib – vactosertib
Sources
1. Montalban-Bravo G, Garcia-Manero G. Myelodysplastic syndromes: 2018 update on diagnosis, risk-stratification and management. Am J Hematol 2018;93:129–147.
2. Weinberg OK, Hasserjian RP. The current approach to the diagnosis of myelodysplastic syndromes. Semin Hematol 2019;56(1):15–21.
3. Zeidan AM, Shallis RM, Wang R, et al. Epidemiology of myelodysplastic syndromes: Why characterizing the beast is a prerequisite to taming it. Blood Rev 2019;34:1–15.
4. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision on the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127(20):2391–2405.
5. Nazha A. The MDS genomics-prognosis symbiosis. Hematology. American Society of Hematology. Education Program 2018;270–276.
6. Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997;89(6):2079–2088.
7. Greenberg PL, Tuechler H, Schanz J, et al. Revised International prognostic scoring system for myelodysplastic syndromes. Blood 2012;120(12):2454–2465.
8. Santini V. Treatment of low-risk myelodysplastic syndromes. Hematology. American Society of Hematology. Education Program 2016;462–469.
9. Park S, Greenberg P, Yucel A, et al. Clinical effectiveness and safety of erythropoietin-stimulating agents for the treatment of low- and intermediate-1-risk myelodysplastic syndrome: a systematic literature review. Br J Haematol 2019;184(2):134–160.
10. Park S, Kelaidi C, Sapena R, et al. Early introduction of ESA in low risk MDS patients may delay the need for RBC transfusion: a retrospective analysis on 112 patients. Leuk Res 2010;34(11):1430–1436.
11. Messa E, Gioia D, Masiera E, et al. Effects of erythropoiesis-stimulating agents on overall survival of International Prognostic Scoring System low/intermediate-1 risk, transfusion-independent myelodysplastic syndrome patients: a cohort study. Haematologica 2019;104(1):e4–e8.
12. Almeida A, Fenaux P, List AF, et al. Recent advances in the treatment of lower-risk non-del(5q) myelodysplastic syndromes (MDS). Leuk Res 2017;52:50–57.
13. List A, Dewald G, Bennett, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med 2006;355:1456–1465.
14. Jonášová A, Červinek L, Bělohlávková P, et al. První české zkušenosti s lenalidomidem v terapii anemických nemocných s myelodysplastickým syndromem s delecí dlouhého ramene 5. chromozomu. Vnitř Lék 2015; 61(12):1028–1033.
15. Talati C, Sallman D, List A. Lenalidomide: myelodysplastic syndromes with del(5q) and beyond. Semin Hematol 2017;54(3):159–166.
16. Jonasova A, Neuwirtova R, Polackova H, et al. Lenalidomide treatment in lower risk myelodysplastic syndromes. The experience of a Czech hematology center. (Positive effect of erythropoietin ± prednisone addition to lenalidomide in refractory or relapsed patients). Leuk Res 2018;69:12–17.
17. Jädersten M, Saft L, Smith A, et al. TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol 2011;29(15):1971–1979.
18. Saft L, Karimi M, Ghaderi M, et al. p53 protein expression independently predicts outcome in patients with lower-risk myelodysplastic syndromes with del(5q). Haematologica 2014;99(6):1041–1049.
19. Raza A, Reeves JA, Feldman EJ, et al. Phase 2 study of lenalidomide in transfusion-dependent low-risk, and intermediate-1 risk myelodysplastic syndromes with karyotypes other than deletion 5q. Blood 2008;111(1):86–93.
20. Santini V, Almeida A, Giagounidis A, et al. The effect of lenalidomide on health-related quality of life in patients with lower-risk non-del(5q) myelodysplastic syndromes: Results from the MDS-005 study. Clin Lymphoma Myeloma Leuk 2018;18(2):136–144.
21. Shallis RM, Zeidan AM. Lenalidomide in non-deletion 5q lower-risk myelodysplastic syndromes: a glass quarter full of three quarters empty? Leuk Lymphoma 2018;59(9):2015–2017.
22. Jonášová A, Neuwirtová R, Ćermák J, et al. Cyclosporin A therapy in hypoplastic MDS patients and certain refractory anemias without hypoplastic bone marrow. Br J Haematol 1998;100(2):304–309.
23. Čermák J. Myelodysplastický syndrom v roce 2016. Onkologie 2016;10(3):114–119.
24. Neukirchen J, Platzbecker U, Sockel K, et al. Real life experience with alemtuzumab treatment of patients with lower-risk MDS and a hypocellular bone marrow. Ann Hematol 2014;93(1):65–69.
25. Hattangadi SM, Wong P, Zhang L, et al. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood 2011;118(24):6258–6268.
26. Liang R, Ghaffari S. Advances in understanding the mechanisms of erythropoiesis in homeostasis and disease. Br J Haematol 2016;174(5):661–673.
27. Budi EH, Duan D, Derynck R. Transforming growth factor-β receptors and Smads: regulatory complexity and functional versatility. Trends Cell Biol 2017;27(9):658–672.
28. Zhao M, Perry JM, Marshall H, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med 2014;20(11):1321–1326.
29. Krystal G, Lam V, Dragowska W, et al. Transforming growth factor beta-1 is an inducer of erythroid differentiation. J Exp Med 1994;180(3):851–860.
30. Zermati Y, Fichelson S, Valensi F, et al. Transforming growth factor inhibits erythropoiesis by blocking proliferation and accelerating differentiation of erythroid progenitors. Exp Hematol 2000;28(8):885–894.
31. Gao X, Lee HY, Lummertz da Rocha E, et al. TGF-β inhibitors stimulate red blood cell production by enhancing self-renewal of BFU-E erythroid progenitors. Blood 2016;128(23):2637–2641.
32. Suragani RNVS, Cadena SM, Cawley SM, et al. Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med 2014;20(4):408–414.
33. Blank U, Karlsson S. TGF-β signaling in the control of hematopoietic stem cells. Blood 2015;125(23):3542–3550.
34. Mies A, Platzbecker U. Increasing the effectiveness of hematopoiesis in myelodysplastic syndromes: erythropoiesis-stimulating agents and transforming growth factor-β superfamily inhibitors. Semin Hematol 2017;54(3):141–146.
35. Platzbecker U, Germing U, Götze KS, et al. Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose--finding study with long-term extension study. Lancet Oncol 2017;18(10):1338–1347.
36. Fenaux P, Kiladjian JJ, Platzbecker U. Luspatercept for the treatment of anemia in myelodysplastic syndromes and primary myelofibrosis. Blood 2019;133(8):790–794.
37. Bataller A, Montalban-Bravo G, Soltysiak KA, Garcia-Manero G. The role of TGFβ in hematopoiesis and myeloid disorders. Leukemia 2019;33(5):1076–1089.
38. Bewersdorf JP, Zeidan AM. Transforming growth factor (TGF)-β pathway as a therapeutic target in lower risk myelodysplastic syndromes. Leukemia 2019;33:1303–1312.
39. Rochette L, Zeller M, Cottin Y, Vergely C. Growth and differentiation factor 11 (GDF11): functions in the regulation of erythropoiesis and cardiac regeneration. Pharmacol Ther 2015;156:26–33.
40. Zhang Y, Wei Y, Liu D, et al. Role of growth differentiation factor 11 in development, physiology and disease. Oncotarget 2017;8(46):81604–81616.
41. Jamaiyar A, Wan W, Janota DM, et al. The versatility and paradox of GDF11. Pharmacol Ther 2017;175:28–34.
42. Iancu-Rubin C, Mosoyan G, Wang J, et al. Stromal cell-mediated inhibition of erythropoiesis can be attenuated by sotatercept (ACE-011), an activin receptor type II ligand trap. Exp Hematol 2013;41(2):155–166.
43. Ruckle J, Jacobs M, Kramer W, et al. Single-dose, randomized, double-blind, placebo-controlled study of ACE-011 (ActRIIA-IgG1) in postmenopausal women. J Bone Miner Res 2009;24(4):744–752.
44. Komrokji R, Garcia-Manero G, Ades L, et al. Sotatercept with long-term extension for the treatment of anemia in patients with lower-risk myelodysplastic syndromes: a phase 2, dose-ranging trial. Lancet Hematol 2018;5(2):e63–e72.
45. Cappellini MD, Porter J, Origa R, et al. Sotatercept, a novel transforming growth factor β ligand trap, improves anemia in β-thalassemia: a phase II, open-label, dose-finding study. Haematologica 2019;104(3):477–484.
46. Bose P, Alfayez M, Verstovsek S. New concepts of treatment for patients with myelofibrosis. Curr Treat Options Oncol 2019;20(1):5.
47. Attie KM, Allison MJ, McClure T, et al. A phase 1 study of ACE-536, a regulator of erythroid differentiation, in healthy volunteers. Am J Hematol 2014;89(7):766–770.
48. Fenaux P, Platzbecker U, Mufti G, et al. The Medalist trial: Results of a phase 3, randomized, double-blind, placebo-controlled study of luspatercept to treat anemia in patients with very low-, low-, or intermediate-risk myelodysplastic syndromes (MDS) with ring sideroblasts (RS) who require red blood cell (RBC) transfusions. Blood 2018;132(Suppl 1):1.
49. Piga A, Perrotta S, Gamberini MR, et al. Luspatercept improves hemoglobin levels and blood transfusion requirements in a study of patients with β-thalassemia. Blood 2019;133(12):1279–1289.
50. Valcarel D, Verma A, Platzbecker U, et al. Phase 2 study of monotherapy galunisertib (LY157299 monohydrate) in very low-, low-, and intermediate-risk patients with myelodysplastic syndromes. Blood 2015;126(Suppl 1):1669.
Labels
Haematology Internal medicine Clinical oncology General practitioner for adultsArticle was published in
Transfusion and Haematology Today
2019 Issue 4
Most read in this issue
- Genome editing using the CRISPR/Cas9 system and its application in haematology
- Characteristics and results of the treatment of patients with acute myeloid leukaemia ≥ 60 years – data from the CELL DATOOL AML database
- Complex mechanisms of action of „BCR signalling“ inhibitors and development of resistance to this targeted therapy in chronic lymphocytic leukaemia
- Mutations of the RAS family in patients with acute myeloid leukaemia