Mutations in epigenetic regulators – potential prognostic markers and therapeutic targets in acute myeloid leukaemia
Authors:
J. Navrátilová; B. Katrincsáková; T. Szotkowski; K. Indrák; H. Urbánková; T. Papajík
Authors‘ workplace:
Hemato-onkologická klinika LF UP a FN Olomouc
Published in:
Transfuze Hematol. dnes,28, 2022, No. 2, p. 85-91.
Category:
Review/Educational Papers
doi:
https://doi.org/10.48095/cctahd2022prolekare.cz6
Overview
Regulation of gene expression, especially in hematopoietic stem cells, plays an essential role in differentiation and other important processes of haematopoiesis. Pathogenesis of different malignant diseases is characterised by disruption of epigenetic regulation. Certain somatic mutations, including genes such as DNMT3A, TET2, IDH1, IDH2, ASXL1, MLL or EZH2, have been found in acute myeloid leukaemia, especially in patients with normal karyotype AML. These mutations are considered to be pre-leukemic events and are stable indicators of clinical course. In combination with driver mutations, they are suitable markers for monitoring minimal residual disease. Specific mutational profiles of individual patients could provide essential information about disease progression, relapse or achievement of complete remission. The aim of this article is to review current knowledge regarding the clinical and therapeutical value of mutations in selected genes involved in epigenetic regulation of gene expression in acute myeloid leukaemia.
Keywords:
Prognosis – acute myeloid leukaemia – epigenetic mutations – epigenetic regulators
Sources
1. Čerňan M, Szotkovski T. Moderní léčba akutní myeloidní leukemie. Transfuze Hematol Dnes. 2017; 1: 16–28.
2. Döhner H, Estey E, Grimwade D, et al. Diag- nosis and management of AML in adults. 2017 ELN recommendations from an international expert panel. Blood. 2017; 129: 424–447.
3. Podoltsev NA, Stahl M, Zeidan AM, Gore SD. Selecting initial treatment of acute myeloid leukaemia in older adults. Blood Rev. 2017; 31: 43–62.
4. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016; 127 (20): 2391–2405.
5. Estey EH. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am J Hematol. 2018; 93 (10): 1267–1291.
6. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016; 374: 2209–2221.
7. Bunetti LA, Gundry MC, Goodell M. DNMT3A in leukemia. Cold Spring Harb Perspect Med. 2017; 2: a030320.
8. Russler-Germain DA, Spencer DH, Yang MA, et al. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell. 2014; 25: 442–454.
9. Yuan XQ, Peng L, Zeng WL, Jiang BY, Li GC, Chen XP. DNMT3A R882 mutations predict a poor prognosis in AML a meta-analysis from 4474 patients. Medicine (Baltimore). 2016; 95 (18): e3519.
10. Corces-Zimmerman RM, Hong WJ, Weissman IL, Medeiros BC, Majeti R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci. 2014; 111: 2548–2553.
11. Gaidzik VI. DNMT3A mutant transcript levels persist in remission and do not predict outcome in patients with acute myeloid leukemia. Leukemia. 2018; 1: 30–37.
12. Jeziskova I, Musilova M, Culen M et al. Distribution of mutations in DNMT3A gene and the suitability of mutations in R882 codon for MRD monitoring in patients with AML. Int J Hematol. 2015; (102): 553–557.
13. Ravandi F, Walter RB, Freeman SD. Evaluating measurable residual disease in acute myeloid leukemia. Blood Adv. 2018; 2 (11): 1356–1366.
14. Bowman RL, Levine RL. TET2 in normal and malignant hematopoiesis. Cold Spring Harb Perspect Med. 2017; (8): a026518.
15. Wang R, Gao X, Yu L. The prognostic impact of tet oncogene family member 2 mutations in patients with acute myeloid leukemia: a systematic-review and meta analysis. BMC Cancer. 2019; 1: 1–11.
16. Weissmann S, Alpermann T, Grossmann V, et al. Landscape of TET2 mutations in acute myeloid leukemia. Leukemia. 2012; (5): 934–942.
17. Rasmussen KD, Jia G, Johansen JV, et al. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev. 2015; (29): 910–922.
18. Montalban-Bravo G, DiNardo C. The role of IDH mutations in acute myeloid leukemia. Future Oncol 2018; 14 (10): 979–993.
19. Medeiros BC, Fathi AT, DiNardo CD, Polyeya DA, Chan SM, Swords R. Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia. 2017; 31: 272–281.
20. Solary E, Bernard OA, Tefferi A, Fuks F, Vainchenker W. The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia. 2014; 28 (3): 485–496.
21. Nassereddine S, Lap CJ, Haroun F, Tabbara I. The role of mutant IDH1 and IDH2 inhibitors in the treatment of acute myeloid leukemia. Ann Hematol. 2017; 96: 1983–1991.
22. Green CL, Evans CM, Zhao L, et al. The prognostic significance of IDH2 mutations in AML depends on the location of the mutation. Blood. 2011; 118 (2): 409–412.
23. Conway O’Brien E, Prideaux S, Chevassut T. The epigenetic landscape of acute myeloid leukemia. Adv Hematol. 2014; 103175. doi: 10.1155/2014/103175.
24. Winters AC, Bernt KM. MLL-rearranged leukemias. An update on science and clinical approaches. Front Pediatr. 2017. doi: 10.3389/fped.2017.00004.
25. Al Hinai ASA, Pratcorona M, Grob T, et al. The landscape of KMT2A-PTD AML: concurrent mutations, gene expression signatures, and clinical outcome. HemaSphere. 2019; (3) 2: e181.
26. Schnittger S, Eder C, Jeromin S, et al. ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia. 2013; (27): 82–91.
27. Metzeler KH, Becker H, Maharry K, et al. ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category. Blood. 2011; (118): 6920–6929.
28. Paschka P, Schlenk RF, Döhner K, et al. ASXL1 mutations in younger adult patients with acute myeloid leukemia: a study by the German-Austrian Acute Myeloid Leukemia Study Group. Haematologica. 2015; 100 (3): 324–330.
29. Alpermann T, Haferlach C, Eder C, et al. AML with gain of chromosome 8 as the sole chromosomal abnormality (+8sole) is associated with a specific molecular mutation pattern including ASXL1 mutations in 46.8% of the patients. Leuk Res. 2015; 39: 265–272.
30. Lund K, Adams PD, Copland M. EZH2 in normal and malignant hematopoiesis. Leukemia. 2014; 28: 44–49.
31. Yoshida K, Toki T, Okuno Y, et al. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat Genet. 2013; 45: 1293–1299.
32. Larsson CA, Cote G, Quintas-Cardama A. The changing mutational landscape of acute myeloid leukemia and myelodysplastic syndrome. Mol Cancer Res. 2013; 11: 815–827.
33. Bewersdorf JP, Shallis R, Stahl M, Zeidan AM. Epigenetic therapy combinations in acute myeloid leukemia: what are the options? Ther Adv Hematol. 2019; 10: 1–19.
34. Čermák J. Posledních 25 let v diagnostice a léčbě myelodysplastického syndromu. Transfuze Hematol Dnes. 2019; 1: 108–117.
35. Pleyer L, Döhner H, Dombret H, et al: Azacitidine for front-line therapy of patients with AML: reproducible efficacy established by direct comparison of international phase 3 trial data with registry data from the Austrian azacitidine registry of the AGMT Study Group. Int J Mol Sci. 2017; 18 (2): 1–18.
36. Dombret H, Seymour JF, Butrym A et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015; 126 (3): 291–299.
37. Kantarjian HM, Roboz GJ, Kropf PL, et al. Guadecitabine (SGI-110) in treatment-naive patients with acute myeloid leukaemia: phase 2 results from a multicentre, randomised, phase 1/2 trial. Lancet Oncol. 2017; 18 (10): 1317–1326.
38. Roboz GJ, Kantarjian HM, Yee KWL, et al. Dose, schedule, safety, and efficacy of guadecitabine in relapsed or refractory acute myeloid leukemia. Cancer. 2018; 124 (2): 325–334.
39. Cerrano M, Itzykson R. New treatment options for acute myeloidl in 2019. Current Oncol Rep. 2019; 21: 1–12.
40. Dinardo CD, Pratz KW, Potluri J, et al. Durable response with venetoclax in combination with decitabine or azacitadine in elderly patients with acute myeloid leukemia (AML). J Clin Oncol. 2018; 36: 7010–7010.
41. DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019; 133 (1): 7–17.
42. DiNardo CD, Stein EM, de Botton S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018; 378 (25): 2386–2398.
43. Stein EM, DiNardo CD, Pollyea DA, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017; 130: 722–731.
44. Amatangelo MD, Quek L, Shih A, et al. Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. Blood. 2017; 130: 732–741.
45. Stein EM, Shoben A, Borate U, et al. Enasidenib is highly active in previously untreated IDH2 mutant AML: early results from the BEAT AML Master Trial. Blood. 2018; 132: 287.
46. Nassereddine S, Coen J, Tabbara IA. Evaluating ivosidenib for the treatment of relapsed/refractory AML: design, development, and place in therapy. OncoTargets Ther. 2019; 12: 303–308.
47. San Jose-Eneriz E, Gimenez-Camino N, Agirre X, Prosper F. HDAC inhibitors in acute myeloid leukemia. Cancers. 2019; 1794: 1–24.
48. Corrales-Medina FF, Manton CA, Orlowski RZ, et al. Efficacy of panobinostat and marizomib in acute myeloid leukemia and bortezomib-resistant models. Leuk Res. 2015; 39 (3): 371–379.
49. Berthon C, Raffoux E, Thomas X, et al. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study. Lancet Haematol. 2016; 3 (4): e186–e195.
50. Stein EM, Garcia-Manero G, Rizzieri DA. The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood. 2018; 131 (24): 2661–2669.
51. Katrincsáková B, Szotkowski T, Divoká M, Indrák K, Jarošová M. Klinický význam génových mutácií u akútnych myeloidných leukemií s normálnym karyotypom. Transfuze Hematol Dnes. 2011; 2: 72–80.
52. Dunlap JB, Leonard J, Rosenberg M, et al. The combination of NPM1, DNMT3A, and IDH1/2 mutations leads to inferior overall survival in AML. Am J Hematol. 2019; (94): 913–920.
Labels
Haematology Internal medicine Clinical oncologyArticle was published in
Transfusion and Haematology Today
2022 Issue 2
Most read in this issue
- Importance of Down syndrome in haematology
- Mutations in epigenetic regulators – potential prognostic markers and therapeutic targets in acute myeloid leukaemia
- Novelties in translational research of acute lymphoblastic leukaemia – selection from the European School of Haematology Conference
- Real-world data on the efficacy and safety of ibrutinib and venetoclax in patients with chronic lymphocytic leukaemia, a single-centre experience