Molecular testing of gastrointestinal tumours – current status and future prospects
Authors:
Aleš Ryška
Authors‘ workplace:
Fingerlandův ústav, patologie LF UK, a FN Hradec Králové
Published in:
Rozhl. Chir., 2024, roč. 103, č. 11, s. 437-442.
Category:
Review
doi:
https://doi.org/10.48095/ccrvch2024437
Overview
In addition to the histological diagnosis, grade and stage, predictive testing plays a crucial role in gastrointestinal tumours today. This is mainly used to identify molecular targets for modern cancer therapy. In esophageal and gastric cancers, HER2 expression and amplification, mismatch repair (MMR) system protein deficiency and PD-L1 expression are tested routinely. In colorectal cancer, it is namely detection of RAS (KRAS and NRAS) and BRAF mutations, as well as the assessment of microsatellite instability; targetable gene fusions are found rarely only. In pancreatic cancer, cases of MMR deficiency, BRCA1/2 mutations and other targetable aberrations can be identified quite rarely. In gallbladder and biliary tract cancers, we are mainly looking for IDH1 and IDH2 mutations, FGFR2 gene fusions and mutations, HER2 amplifications or mutations, as well as mutations of BRAF or BRCA1/2. All results should be discussed within the molecular tumor board.
Keywords:
next generation sequencing – immunotherapy – Gastrointestinal tumors – targeted therapy – driver mutations – predictive biomarkers
Sources
1. Matias-Guiu X, Stanta G, Carneiro F et al. The leading role of pathology in assessing the somatic molecular alterations of cancer: Position Paper of the European Society of Pathology. Virchows Arch 2020; 476(4): 491–497. doi: 10.1007/s00428-020-02757-0.
2. Gervaso L, Pellicori S, Cella CA et al. Biomarker evaluation in radically resectable locally advanced gastric cancer treated with neoadjuvant chemotherapy: an evidence reappraisal. Ther Adv Med Oncol 2021; 13: 17588359211029559. doi: 10.1177/17588359211029559.
3. Dienstmann R, Vermeulen L, Guinney J et al. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer 2017; 17(2): 79–92. doi: 10.1038/nrc.2016.126.
4. Washington MK, Goldberg RM, Chang GJ et al. Diagnosis of digestive system tumours. Int J Cancer 2021; 148(5): 1040–1050. doi: 10.1002/ijc.33210.
5. Ryska A. Molecular pathology in real time. Cancer Metastasis Rev 2016; 35(1): 129–140. doi: 10.1007/s10555-016-9607-3.
6. Haslam A, Kim MS, Prasad V. Updated estimates of eligibility for and response to genome-targeted oncology drugs among US cancer patients, 2006–2020. Ann Oncol 2021; 32(7): 926–932. doi: 10.1016/j.annonc.2021.04.003.
7. Sunakawa Y, Lenz HJ. Molecular classification of gastric adenocarcinoma: translating new insights from the cancer genome atlas research network. Curr Treat Options Oncol 2015; 16(4): 17. doi: 10.1007/s11864-015-0331-y.
8. Sivapalan L, Kocher HM, Ross-Adams H et al. The molecular landscape of pancreatic ductal adenocarcinoma. Pancreatology 2022; 22(7): 925–936. doi: 10.1016/j.pan.2022.07.010.
9. Dang Q, Zuo L, Hu X et al. Molecular subtypes of colorectal cancer in the era of precision oncotherapy: current inspirations and future challenges. Cancer Med 2024; 13(14): e70041. doi: 10.1002/cam4.70041.
10. Salem ME, Puccini A, Xiu J et al. Comparative molecular analyses of esophageal squamous cell carcinoma, esophageal adenocarcinoma, and gastric adenocarcinoma. Oncologist 2018; 23(11): 1319–1327. doi: 10.1634/theoncologist.2018-0143.
11. Sheikh M, Roshandel G, McCormack V et al. Current status and future prospects for esophageal cancer. Cancers (Basel) 2023; 15(3): 765. doi: 10.3390/cancers15030765.
12. Zulfiqar M, Bluth MH, Bhalla A. Molecular diagnostics in esophageal and gastric neoplasms: 2018 update. Clin Lab Med 2018; 38(2): 357–365. doi: 10.1016/j.cll.2018.02.009.
13. Lam AK. Updates on World Health Organization classification and staging of esophageal tumors: implications for future clinical practice. Hum Pathol 2021; 108: 100–112. doi: 10.1016/j.humpath.2020.10.015.
14. Personeni N, Baretti M, Bozzarelli S et al. Assessment of HER2 status in patients with gastroesophageal adenocarcinoma treated with epirubicin-based chemotherapy: heterogeneity-related issues and prognostic implications. Gastric Cancer 2017; 20(3): 428–437. doi: 10.1007/s10120-016-0625-1.
15. Fashoyin-Aje L, Donoghue M, Chen H et al. FDA approval summary: pembrolizumab for recurrent locally advanced or metastatic gastric or gastroesophageal junction adenocarcinoma expressing PD-L1. Oncologist 2019; 24(1): 103–109. doi: 10.1634/theoncologist.2018-0221.
16. Press MF, Ellis CE, Gagnon RC et al. HER2 status in advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma for entry to the TRIO-013/LOGiC trial of lapatinib. Mol Cancer Ther 2017; 16(1): 228–238. doi: 10.1158/1535-7163.MCT-15-0887.
17. Vakiani E. HER2 testing in gastric and gastroesophageal adenocarcinomas. Adv Anat Pathol 2015; 22(3): 194–201. doi: 10.1097/PAP.0000000000000067.
18. Chenard-Poirier M, Smyth EC. Immune checkpoint inhibitors in the treatment of gastroesophageal cancer. Drugs 2019; 79(1): 1–10. doi: 10.1007/s40265-018-1032-1.
19. Gervaso L, Bottiglieri L, Meneses-Medina MI et al. Role of microsatellite instability and HER2 positivity in locally advanced esophago-gastric cancer patients treated with peri-operative chemotherapy. Clin Transl Oncol 2023; 25(11): 3287–3295. doi: 10.1007/s12094-023-03179-5.
20. Baretton GB, Lordick F, Gaiser T et al. Standardized and quality-assured predictive PD-L1 testing in the upper gastrointestinal tract. J Cancer Res Clin Oncol 2023; 149(17): 16231–16238. doi: 10.1007/s00432-023-05180-5.
21. Tan P, Yeoh KG. Genetics and molecular pathogenesis of gastric adenocarcinoma. Gastroenterology 2015; 149(5): 1153–1162.e3. doi: 10.1053/j.gastro.2015.05.059.
22. Röcken C. Predictive biomarkers in gastric cancer. J Cancer Res Clin Oncol 2023; 149(1): 467–481. doi: 10.1007/s00432-022-04408-0.
23. Yoshida H, Yamamoto N, Taniguchi H et al. Comparison of HER2 status between surgically resected specimens and matched biopsy specimens of gastric intestinal-type adenocarcinoma. Virchows Arch 2014; 465(2): 145–154. doi: 10.1007/s00428-014-1597-3.
24. Yan B, Yau EX, Choo SN et al. Dual-colour HER2/chromosome 17 chromogenic in situ hybridisation assay enables accurate assessment of HER2 genomic status in gastric cancer and has potential utility in HER2 testing of biopsy samples. J Clin Pathol 2011; 64(10): 880–883. doi: 10.1136/jclinpath-2011-200009.
25. Ruschoff J, Dietel M, Baretton G et al. HER2 diagnostics in gastric cancer-guideline validation and development of standardized immunohistochemical testing. Virchows Arch 2010; 457(3): 299–307. doi: 10.1007/s00428-010-0952-2.
26. Boers JE, Meeuwissen H, Methorst N. HER2 status in gastro-oesophageal adenocarcinomas assessed by two rabbit monoclonal antibodies (SP3 and 4B5) and two in situ hybridization methods (FISH and SISH). Histopathology 2011; 58(3): 383–394. doi: 10.1111/j.1365-2559.2011.03760.x.
27. Pena-Diaz J, Rasmussen LJ. Approaches to diagnose DNA mismatch repair gene defects in cancer. DNA Repair (Amst) 2016; 38: 147–154. doi: 10.1016/j.dnarep.2015.11.022.
28. Mathiak M, Warneke VS, Behrens HM et al. Clinicopathologic characteristics of microsatellite instable gastric carcinomas revisited: urgent need for standardization. Appl Immunohistochem Mol Morphol 2017; 25(1): 12–24. doi: 10.1097/PAI.0000000000000264.
29. Hashimoto T, Kurokawa Y, Takahashi T et al. Predictive value of MLH1 and PD-L1 expression for prognosis and response to preoperative chemotherapy in gastric cancer. Gastric Cancer 2019; 22(4): 785–792. doi: 10.1007/s10120-018-00918-4.
30. Pietrantonio F, De Braud F, Da Prat V et al. A review on biomarkers for prediction of treatment outcome in gastric cancer. Anticancer Res 2013; 33(4): 1257–1266.
31. Kubota Y, Shitara K. Zolbetuximab for Claudin18.2-positive gastric or gastroesophageal junction cancer. Ther Adv Med Oncol 2024; 16: 17588359231217967. doi: 10.1177/17588359231217967.
32. Cao W, Xing H, Li Y et al. Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy. Biomark Res 2022; 10(1): 38. doi: 10.1186/s40364-022-00385-1.
33. Yang Q, Qu R, Lu S et al. Biological and clinical characteristics of proximal colon cancer: far from its anatomical subsite. Int J Med Sci 2024; 21(10): 1824–1839. doi: 10.7150/ijms.97574.
34. Yang SY, Cho MS, Kim NK. Difference between right-sided and left-sided colorectal cancers: from embryology to molecular subtype. Expert Rev Anticancer Ther 2018; 18(4): 351–358. doi: 10.1080/14737140.2018.1442217.
35. Aljama S, Lago EP, Zafra O et al. Dichotomous colorectal cancer behaviour. Crit Rev Oncol Hematol 2023; 189: 104067. doi: 10.1016/j.critrevonc.2023.104067.
36. Huyghe JR, Harrison TA, Bien SA et al. Genetic architectures of proximal and distal colorectal cancer are partly distinct. Gut 2021; 70(7): 1325–1334. doi: 10.1136/gutjnl-2020-321534.
37. Minoo P, Zlobec I, Peterson M et al. Characterization of rectal, proximal and distal colon cancers based on clinicopathological, molecular and protein profiles. Int J Oncol 2010; 37(3): 707–718. doi: 10.3892/ijo_00000720.
38. Arnold D, Lueza B, Douillard JY et al. Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann Oncol 2017; 28(8): 1713–1729. doi: 10.1093/annonc/mdx175.
39. Heinen CD. Mismatch repair defects and Lynch syndrome: the role of the basic scientist in the battle against cancer. DNA Repair (Amst) 2016; 38: 127–134. doi: 10.1016/j.dnarep.2015.11.025.
40. Delaye M, Ibadioune S, Julié C et al. Rational testing for gene fusion in colorectal cancer: MSI and RAS-BRAF wild-type metastatic colorectal cancer as target population for systematic screening. Eur J Cancer 2022; 170: 85–90. doi: 10.1016/j.ejca.2022.04.024.
41. Heinemann V, Reni M, Ychou M et al. Tumour-stroma interactions in pancreatic ductal adenocarcinoma: rationale and current evidence for new therapeutic strategies. Cancer Treat Rev 2014; 40(1): 118–128. doi: 10.1016/j.ctrv.2013.04.004.
42. Zhang CY, Liu S, Yang M. Clinical diagnosis and management of pancreatic cancer: markers, molecular mechanisms, and treatment options. World J Gastroenterol 2022; 28(48): 6827–6845. doi: 10.3748/wjg.v28.i48.6827.
43. Martinez-Useros J, Martin-Galan M, Garcia-Foncillas J. The match between molecular subtypes, histology and microenvironment of pancreatic cancer and its relevance for chemoresistance. Cancers (Basel) 2021; 13(2): 322. doi: 10.3390/cancers13020322.
44. Martinez-Useros J, Garcia-Foncillas J. The role of BRCA2 mutation status as diagnostic, predictive, and prognosis biomarker for pancreatic cancer. Biomed Res Int 2016; 2016: 1869304. doi: 10.1155/2016/1869304.
45. Banales JM, Marin JJG, Lamarca A et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 2020; 17(9): 557–588. doi: 10.1038/s41575-020-0310-z.
46. Lamarca A, Barriuso J, McNamara MG et al. Molecular targeted therapies: ready for “prime time” in biliary tract cancer. J Hepatol 2020; 73(1): 170–185. doi: 10.1016/j.jhep.2020.03.007.
prof. MUDr. Aleš Ryška, Ph.D.
Fingerlandův ústav patologie
LF UK a FN Hradec Králové
Sokolovská 581
500 05 Hradec Králové
ORCID autora
A. Ryška 0000-0002-3051-2280
Labels
Surgery Orthopaedics Trauma surgeryArticle was published in
Perspectives in Surgery
2024 Issue 11
Most read in this issue
- The role of neoadjuvant treatment in localized pancreatic cancer
- Perioperative systemic therapy as a part of comprehensive multimodal treatment in esophageal and gastric cancer – new treatment guidelines
- Chirurgové platní, poplatní, záplatní, placení a platící
- Oligometastatic pancreatic cancer – prognostic factors for oncosurgical individualized therapy