#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

S cirhózou asociovaná imunitná dysfunkcia (CAID) – príčiny, fenotypy a dôsledky


Authors: D. J. Havaj;  L. Skladaný
Authors‘ workplace: Internal Med Department II, Slovak Medical University, Division of Hepatology, Gastroenterology and Liver Transplantation, FD Roosevelt University Hospital, Banska Bystrica, Slovakia
Published in: Gastroent Hepatol 2022; 76(2): 101-110
Category:
doi: https://doi.org/10.48095/ccgh2022101

Overview

Termín s cirhózou asociovaná imunitná dysfunkcia predstavuje široké spektrum zmien v lokálnej a systémovej imunitnej odpovedi. CAID je charakterizovaná súčasnou prítomnosťou systémového zápalu a imunitného deficitu, ktorých intenzita prejavu závisí od stupňa pokročilosti ochorenia, predisponujúcich a precipitujúcich faktorov. Kľúčovú úlohu v patogenéze CAID zohráva spojenie črevo–pečeň. Porucha ich vzájomnej súhry, ako aj zmeny v zložení mikrobiómu, vedú k poškodeniu črevnej bariéry a následnej permanentnej antigénnej stimulácii, ktorá vedie k novému prozápalovému nastaveniu imunitného systému. Táto zmena charakterizuje nízkozápalový fenotyp CAID. Opakované zosilnenia mikrobiálnej translokácie a opakované pôsobenie precipitujúceho faktora vedú k vzplanutiu systémového zápalu a prelomeniu imunitnej tolerancie. Výsledkom je dysregulovaná hyperinflamačná imunitná odpoveď, ktorá reprezentuje vysokozápalový fenotyp CAID. Zmena fenotypu je podkladom pre progresiu cirhózy do štádia dekompenzácie. Miera systémového zápalu zodpovedá jednotlivým subtypom dekompenzácie, pričom najvyšší stupeň dosahuje pri ACLF, ktoré reprezentuje fulminantný imunofenotyp CAID. K rozvoju dysfunkcie jednotlivých orgánových systémov prispievajú okrem orgánovo špecifických mechanizmov aj hyperinflamačná imunitná odpoveď, imunopatologické a imunometabolické mechanizmy. Trvajúca dysregulovaná prozápalová odpoveď vedie k postupnému vyčerpaniu imunity a preprogramovaniu vrodených a získaných imunitných buniek. Navodená imunoparalýza je príčinou problémových infekcií a predstavuje indolentný imunofenotyp CAID.

Klíčová slova:

mikrobiom – zápal – s cirhózou asociovaná imunitná dysfunkcia (CAID) – nízkozápalový fenotyp – vysokozápalový fenotyp – systémový zápal – fulminantný imunofenotyp – imunoparalýza – indolentný imunofenotyp – spojenie črevo–pečeň


Sources

1. Dirchwolf M, Ruf AE. Role of systemic inflammation in cirrhosis: from pathogenesis to prognosis. World J Hepatol 2015; 7 (16): 1974–1981. doi: 10.4254/wjh.v7.i16.1974.

2. Zhou WC, Zhang QB, Qiao L. Pathogenesis of liver cirrhosis. World J Gastroenterol 2014; 20 (23): 7312–7324. doi: 10.3748/wjg.v20.i23.7312.

3. Novo E, Bocca C, Foglia B et al. Liver fibrogenesis: un update on established and emerging basic concepts. Arch Biochem Biophys 2020; 689: 108445. doi: 10.1016/j.abb.2020.108445.

4. Albillos A, Martin-Mateos R, Van der Merwe S et al. Cirrhosis-associated immune dysfunction. Nat Rev Gastroenterol Hepatol 2022; 19 (2): 112–134. doi: 10.1038/s41575-021-00520-7.

5. Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology 2006; 43 (2 Suppl 1): S54–62. doi: 10.1002/hep.21060.

6. Robinson M, Harmon C, O’Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol 2016; 13 (3): 267–276. doi: 10.1038/cmi.2016.3.

7. Nguyen-Lefebvre AT, Horuzsko A. Kupffer cell metabolism and function. J Enzymol Metab 2015; 1 (1): 101.

8. Shetty S, Lalor PF, Adams DH. Liver sinusoidal endothelial cells – gatekeepers of hepatic immunity. Nat Rev Gastroenterol Hepatol 2018; 15 (9): 555–567. doi: 10.1038/s41575-018-0020-y.

9. Wilkinson AL, Qurashi M, Shetty S. The role of sinusoidal endothelial cells in the axis of inflammation and cancer within the liver. Front Physiol 2020; 11: 990. doi: 10.3389/fphys.2020.00990.

10. Méndez-Sánchez N, Córdova-Gallardo J, Barranco-Fragoso B et al. Hepatic dendritic cells in the development and progression of metabolic steatohepatitis. Front Immunol 2021; 12: 641240. doi: 10.3389/fimmu.2021.641240.

11. Wang Y, Zhang C. The roles of liver-resident lymphocytes in liver diseases. Front Immunol 2019; 10: 1582. doi: 10.3389/fimmu.2019.01582.

12. Jin-Seok Byun, Hyon-Seung Yi. Hepatic immune microenvironment in alcoholic and nonalcoholic liver disease. Biomed Res Int 2017; 2017: 6862439. doi: 10.1155/2017/6862439.

13. Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: pathophysiological basis for therapy. J Hepatol 2020; 72 (3): 558–577. doi: 10.1016/j.jhep.2019.10.003.

14. Mörbe UM, Jørgensen PB, Fenton TM et al. Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol 2021; 14 (4): 793–802. doi: 10.1038/s41385-021-00389-4.

15. Ma H, Tao W, Zhu S. T lymphocytes in the intestinal mucosa: defense and tolerance. Cell Mol Immunol 2019; 16 (3): 216–224. doi: 10.1038/s41423-019-0208-2.

16. Jiao Y, Wu L, Huntington ND et al. Crosstalk between gut microbio­ta and innate immunity and its implication in autoimmune diseases. Front Immunol 2020; 11: 282. doi: 10.3389/fimmu.2020.00282.

17. Bain CC, Schridde A. Origin, differentiation, and function of intestinal macrophages. Front Immunol 2018; 9: 2733. doi: 10.3389/fimmu.2018.02733.

18. Schiavi E, Smolinska S, O’Mahony L. Intestinal dendritic cells. Curr Opin Gastroenterol 2015; 31 (2): 98–103. doi: 10.1097/mog.0000 000000000155.

19. Faria AMC, Reis BS, Mucida D. Tissue adaptation: implications for gut immunity and tolerance. J Exp Med 2017; 214 (5): 1211–1226. doi: 10.1084/jem.20162014.

20. Trebicka J, Macnaughtan J, Schnabl B et al. The microbio­ta in cirrhosis and its role in hepatic decompensation. J Hepatol 2021; 75 (Suppl 1): S67–S81. doi: 10.1016/j.jhep.2020.11.013.

21. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbio­l Rev 2009; 22 (2): 240–273. doi: 10.1128/CMR.00046-08.

22. Chen P, Stärkel P, Turner JR et al. Dysbio­sis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice. Hepatology 2015; 61 (3): 883–894. doi: 10.1002/hep.27489.

23. Kubes P, Mehal WZ. Sterile inflammation in the liver. Gastroenterology 2012; 143 (5): 1158–1172. doi: 10.1053/j.gastro.2012.09.008.

24. Kelley N, Jeltema D, Duan Y et al. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 2019; 20 (13): 3328. doi: 10.3390/ijms20133328.

25. Wu X, Dong L, Lin X et al. Relevance of the NLRP3 inflammasome in the pathogenesis of chronic liver disease. Front Immunol 2017; 8: 1728. doi: 10.3389/fimmu.2017.01728.

26. Engelmann C, Clària J, Szabo G et al. Pathophysiology of decompensated cirrhosis: portal hypertension, circulatory dysfunction, inflammation, metabolism and mitochondrial dysfunction. J Hepatol 2021; 75 (Suppl 1): S49–S66. doi: 10.1016/j.jhep.2021.01.002.

27. Koda Y, Teratani T, Chu PS et al. CD8+ tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells. Nat Commun 2021; 12 (1): 4474. doi: 10.1038/s41467-021-24734-0.

28. Heymann F, Peusquens J, Ludwig-Portugall I et al. Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology 2015; 62 (1): 279–291. doi: 10.1002/hep.27793.

29. Wang C, Ma C, Gong L et al. Macrophage polarization and its role in liver disease. Front Immunol 2021; 12: 803037. doi: 10.3389/fimmu. 2021.8030.

30. Noor MT, Manoria P. Immune dysfunction in cirrhosis. J Clin Transl Hepatol 2017; 5 (1): 50–58. doi: 10.14218/JCTH.2016.00056.

31. Trebicka J, Bork P, Krag A et al. Utilizing the gut microbio­me in decompensated cirrhosis and acute-on-chronic liver failure. Nat Rev Gastroenterol Hepatol 2021; 18 (3): 167–180. doi: 10.1038/s41575-020-00376-3.

32. Almeida JI, Tenreiro MF, Martinez-Santamaria L et al. Hallmarks of the human intestinal microbio­me on liver maturation and function. J Hepatol 2022; 76 (3): 694–725. doi: 10.1016/j.jhep.2021.10.015.

33. Tripathi A, Debelius J, Brenner DA et al. The gut-liver axis and the intersection with the microbio­me. Nat Rev Gastroenterol Hepatol 2018; 15 (7): 397–411. doi: 10.1038/s41575-018-0011-z.

34. Bajaj JS. Alcohol, liver disease and the gut microbio­ta. Nat Rev Gastroenterol Hepatol 2019; 16 (4): 235–246. doi: 10.1038/s41575-018-0099-1.

35. Bajaj JS, Idilman R, Mabudian L et al. Diet affects gut microbio­ta and modulates hospitalization risk differentially in an international cirrhosis cohort. Hepatology 2018; 68 (1): 234–247. doi: 10.1002/hep.29791.

36. Solé C, Guilly S, Da Silva K et al. Alterations in gut microbio­me in cirrhosis as assessed by quantitative metagenomics: relationship with acute-on-chronic liver failure and prognosis. Gastroenterology 2021; 160 (1): 206–218. doi: 10.1053/j.gastro.2020.08.054.

37. Bajaj JS, Heuman DM, Hylemon PB et al. Altered profile of human gut microbio­me is associated with cirrhosis and its complications. J Hepatol 2014; 60 (5): 940–947. doi: 10.1016/j.jhep.2013.12.019.

38. Qin N, Yang F, Li A et al. Alterations of the human gut microbio­me in liver cirrhosis. Nature 2014; 513 (7516): 59–64. doi: 10.1038/nature 13568.

39. Chen Y, Yang F, Lu H et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 2011; 54 (2): 562–572. doi: 10.1002/hep.24423.

40. Pijls KE, Jonkers DMAE, Elamin EE et al. Intestinal epithelial barrier function in liver cirrhosis: an extensive review of the literature. Liver Int 2013; 33 (10): 1457–1469. doi: 10.1111/liv.12271.

41. Muñoz L, Borrero MJ, Úbeda M et al. Intestinal immune dysregulation driven by dysbio­sis promotes barrier disruption and bacterial translocation in rats with cirrhosis. Hepatology 2019; 70 (3): 925–938. doi: 10.1002/hep.30349.

42. Assimakopoulos SF, Tsamandas AC, Tsiaous­sis GI et al. Altered intestinal tight junctions’ expression in patients with liver cirrhosis: a pathogenetic mechanism of intestinal hyperpermeability. Eur J Clin Invest 2012; 42 (4): 439–446. doi: 10.1111/j.1365-2362.2011.02 609.x.

43. Wiest R, Lawson M, Geuking M. Pathological bacterial translocation in liver cirrhosis. J Hepatol 2014; 60 (1): 197–209. doi: 10.1016/ j.jhep.2013.07.044.

44. Muñoz L, Borrero MJ, Ubeda M et al. Interaction between intestinal dendritic cells and bacteria translocated from the gut in rats with cirrhosis. Hepatology 2012; 56 (5): 1861–1869. doi: 10.1002/hep.25854.

45. Inamura T, Miura S, Tsuzuki Y et al. Alteration of intestinal intraepithelial lymphocytes and increased bacterial translocation in a murine model of cirrhosis. Immunol Lett 2003; 90 (1): 3–11. doi: 10.1016/j.imlet.2003.05.002.

46. Kaliannan K. Compromise of a-defensin function in liver cirrhosis facilitates the toxic relationship between gut permeability and endotoxemia. Dig Dis Sci 2018; 63 (10): 2492–2494. doi: 10.1007/s10620-018-5197-y.

47. Du Plessis J, Vanheel H, Janssen CEI et al. Activated intestinal macrophages in patients with cirrhosis release NO and IL-6 that may disrupt intestinal barrier function. J Hepatol 2013; 58 (6): 1125–1132. doi: 10.1016/j.jhep.2013.01.038.

48. Genescà J, Martí R, Rojo F et al. Increased tumour necrosis factor alpha production in mesenteric lymph nodes of cirrhotic patients with ascites. Gut 2003; 52 (7): 1054–1059. doi: 10.1136/gut.52.7.1054.

49. Wang R, Tang R, Li B et al. Gut microbio­me, liver immunology, and liver diseases. Cell Mol Immunol 2021; 18 (1): 4–17. doi: 10.1038/s41 423-020-00592-6.

50. Hassan M, Moghadamrad S, Sorribas M et al. Paneth cells promote angiogenesis and regulate portal hypertension in response to microbial signals. J Hepatol 2020; 73 (3): 628–639. doi: 10.1016/j.jhep.2020.03.019.

51. Schierwagen R, Alvarez-Silva C, Madsen MSA et al. Circulating microbio­me in blood of different circulatory compartments. Gut 2019; 68 (3): 578–580. doi: 10.1136/gutjnl-2018-316227.

52. Alvarez-Silva C, Schierwagen R, Pohlmann A et al. Compartmentalization of immune response and microbial translocation in decompensated cirrhosis. Front Immunol 2019; 10: 69. doi: 10.3389/fimmu.2019.00069.

53. Albillos A, Lario M, Álvarez-Mon M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J Hepatol 2014; 61 (6): 1385–1396. doi: 10.1016/j.jhep.2014.08.010.

54. Martin-Mateos R, Alvarez-Mon M, Albillos A. Dysfunctional immune response in acute-on-chronic liver failure: it takes two to tango. Front Immunol 2019; 10: 973. doi: 10.3389/fimmu.2019.00973.

55. Clària J, Stauber RE, Coenraad MJ et al. Systemic inflammation in decompensated cirrhosis: characterization and role in acute-on-chronic liver failure. Hepatology 2016; 64 (4): 1249–1264. doi: 10.1002/hep.28740.

56. Falasca K, Ucciferri C, Dalessandro M et al. Cytokine patterns correlate with liver damage in patients with chronic hepatitis B and C. Ann Clin Lab Sci 2006; 36 (2): 144–150.

57. Martínez-Esparza M, Tristán-Manzano M, Ruiz-Alcaraz AJ et al. Inflammatory status in human hepatic cirrhosis. World J Gastroenterol 2015; 21 (41): 11522–11541. doi: 10.3748/wjg.v21.i41.11522.

58. Liu K, Wang FS, Xu R. Neutrophils in liver diseases: pathogenesis and therapeutic targets. Cell Mol Immunol 2021; 18 (1): 38–44. doi: 10.1038/s41423-020-00560-0.

59. Zimmermann HW, Seidler S, Nattermann J et al. Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis. PLoS One 2010; 5 (6): e11049. doi: 10.1371/journal.pone.0011049.

60. Bernsmeier C, van der Merwe S, Périanin A. Innate immune cells in cirrhosis. J Hepatol 2020; 73 (1): 186–201. doi: 10.1016/j.jhep.2020.03. 027.

61. Irvine KM, Ratnasekera I, Powell EE et al. Causes and consequences of innate immune dysfunction in cirrhosis. Front Immunol 2019; 10: 293. doi: 10.3389/fimmu.2019.0029.

62. Muñoz L, Albillos A, Nieto M et al. Mesenteric Th1 polarization and monocyte TNF- a production: first steps to systemic inflammation in rats with cirrhosis. Hepatology 2005; 42 (2): 411–419. doi: 10.1002/hep.20799.

63. Girón JA, Alvarez-Mon M, Menéndez-Caro JL et al. Increased spontaneous and lymphokine- conditioned IgA and IgG synthesis by B cells from alcoholic cirrhotic patients. Hepatology 1992; 16 (3): 664–670. doi: 10.1002/hep.1840160309.

64. Trebicka J, Fernandez J, Papp M et al. The PREDICT study uncovers three clinical courses of acutely decompensated cirrhosis that have distinct pathophysiology. J Hepatol 2020; 73 (4): 842–854. doi: 10.1016/j.jhep.2020.06.013.

65. Gustot T, Stadlbauer V, Laleman W et al. Transition to decompensation and acute-on-chronic liver failure: role of predisposing factors and precipitating events. J Hepatol 2021; 75 (Suppl 1): S36–S48. doi: 10.1016/j.jhep.2020.12.005.

66. Arroyo V, Angeli P, Moreau R et al. The systemic inflammation hypothesis: towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis. J Hepatol 2021; 74 (3): 670–685. doi: 10.1016/j.jhep.2020.11.048.

67. Schrier RW, Arroyo V, Bernardi M et al. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology 1988; 8 (5): 1151–1157. doi: 10.1002/hep.1840080532.

68. Arroyo V. Pathophysiology, dia­gnosis and treatment of ascites in cirrhosis. Ann Hepatol 2002; 1 (2): 72–79.

69. Møller S, Danielsen KV, Wiese S et al. An update on cirrhotic cardiomyopathy. Expert Rev Gastroenterol Hepatol 2019; 13 (5): 497–505. doi: 10.1080/17474124.2019.1587293.

70. Sampaio F, Pimenta J. Left ventricular function assessment in cirrhosis: current methods and future directions. World J Gastroenterol 2016; 22 (1): 112–125. doi: 10.3748/wjg.v22.i1.112.

71. Gracia-Sancho J, Marrone G, Fernández-Iglesias A. Hepatic microcirculation and mechanisms of portal hypertension. Nat Rev Gastroenterol Hepatol 2019; 16 (4): 221–234. doi: 10.1038/s41575-018-0097-3.

72. Peerapornratana S, Manrique-Caballero CL, Gómez H et al. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int 2019; 96 (5): 1083–1099. doi: 10.1016/j.kint.2019.05.026.

73. Gomez H, Ince C, De Backer D et al. A unified theory of sepsis-induced acute kidney injury. Shock 2014; 41 (1): 3–11. doi: 10.1097/SHK.0000 000000000052.

74. Alobaidi R, Basu RK, Goldstein SL et al. Sepsis-associated acute kidney injury. Semin Nephrol 2015; 35 (1): 2–11. doi: 10.1016/j.semnephrol.2015.01.002.

75. Angeli P, Garcia-Tsao G, Nadim MK et al. News in pathophysiology, definition and classification of hepatorenal syndrome: a step beyond the International Club of Ascites (ICA) consensus document. J Hepatol 2019; 71 (4): 811–822. doi: 10.1016/j.jhep.2019.07.002.

76. Manzhalii E, Virchenko O, Falalyeyeva T et al. Hepatic encephalopathy aggravated by systemic inflammation. Dig Dis 2019; 37 (6): 509–517. doi: 10.1159/000500717.

77. Bhanji RA, Montano-Loza AJ, Watt KD. Sarcopenia in cirrhosis: looking beyond the skeletal muscle loss to see the systemic disease. Hepatology 2019; 70 (6): 2193–2203. doi: 10.1002/hep.30686.

78. Grønbæk H, Rodgaard-Hansen S, Aagaard NK et al. The soluble macrophage activation markers sCD163 and mannose receptor (sMR) predict mortality in patients with liver cirrhosis without or with acute-on-chronic liver failure (ACLF). J Hepatol 2016; 64 (4): 813–822. doi: 10.1016/j.jhep.2015.11.021.

79. Tan EX, Wang MX, Pang J et al. Plasma exchange in patients with acute and acute-on-chronic liver failure: a systematic review. World J Gastroenterol 2020; 26 (2): 219–245. doi: 10.3748/wjg.v26.i2.219.

80. Gustot T, Fernandez J, Szabo G et al. Sepsis in alcohol-related liver disease. J Hepatol 2017; 67 (5): 1031–1050. doi: 10.1016/j.jhep.2017.06.013.

81. Tritto G, Bechlis Z, Stadlbauer V et al. Evidence of neutrophil functional defect despite inflammation in stable cirrhosis. J Hepatol 2011; 55 (3): 574–581. doi: 10.1016/j.jhep.2010.11.034.

82. Xu R, Bao C, Huang H et al. Low expression of CXCR1/2 on neutrophils predicts poor survival in patients with hepatitis B virus-related acute-on-chronic liver failure. Sci Rep 2016; 6: 38714. doi: 10.1038/srep38714.

83. Artru F, Bou Saleh M, Maggiotto F et al. IL-33/ST2 pathway regulates neutrophil migration and predicts outcome in patients with severe alcoholic hepatitis. J Hepatol 2020; 72 (6): 1052–1061. doi: 10.1016/j.jhep.2019.12.017.

84. Rolas L, Makhezer N, Hadjoudj S et al. Inhibition of mammalian target of rapamycin aggravate the respiratory burst defect of neutrophils from decompensated patients with cirrhosis. Hepatology 2013; 57 (3): 1163–1171. doi: 10.1002/hep.26109.

85. Rolas L, Boussif A, Weiss E et al. NADPH oxidase depletion in neutrophils from patients with cirrhosis and restoration via toll-like receptor 7/8 activation. Gut 2018; 67 (8): 1505–1516. doi: 10.1136/gutjnl-2016-313443.

86. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 2018; 18 (2): 134–147. doi: 10.1038/nri.2017.105.

87. Agraz-Cibrian JM, Segura-Ortega JE, Delgado-Rizo V et al. Alterations in neutrophil extracellular traps is associated with the degree of decompensation of liver cirrhosis. J Infect Dev Ctries 2016; 10 (5): 512–517. doi: 10.3855/jidc.7165.

88. Bukong TN, Cho Y, Iracheta-Vellve A et al. Abnormal neutrophil traps and impaired efferocytosis contribute to liver injury and sepsis severity after binge alcohol use. J Hepatol 2018; 69 (5): 1145–1154. doi: 10.1016/j.jhep.2018.07.005.

89. Rajkovic IA, Williams R. Abnormalities of neutrophil phagocytosis, intracellular killing and metabolic activity in alcoholic cirrhosis and hepatitis. Hepatology 1986; 6 (2): 252–262. doi: 10.1002/hep.1840060217.

90. Gomez F, Ruiz P, Schreiber AD. Impaired function of macrophage Fcg receptors and bacterial infection in alcoholic cirrhosis. N Engl J Med 1994; 331 (17): 1122–1128. doi: 10.1056/NEJM199410273311704.

91. Korf H, du Plessis J, van Pelt J et al. Inhibition of glutamine synthetase in monocytes from patients with acute-on-chronic liver failure resuscitates their antibacterial and inflammatory capacity. Gut 2019; 68 (10): 1872–1883. doi: 10.1136/gutjnl-2018-316888.

92. Brenig R, Pop OT, Triantafyllou E et al. Expression of AXL receptor tyrosine kinase relates to monocyte dysfunction and severity of cirrhosis. Life Sci Alliance 2020; 3 (1): e201900465. doi: 10.26508/lsa.201900465.

93. Bernsmeier C, Pop OT, Singanayagam A et al. Patients with acute-on-chronic liver failure have increased numbers of regulatory immune cells expressing the receptor tyrosine kinase MERTK. Gastroenterology 2015; 148 (3): 603–615. doi: 10.1053/j.gastro.2014.11.045.

94. Triantafyllou E, Woollard KJ, McPhail MJW et al. The role of monocytes and macrophages in acute and acute-on-chronic liver failure. Front Immunol 2018; 9: 2948. doi: 10.3389/fimmu.2018.02948.

95. Singanayagam A, Triantafyllou E. Macrophages in chronic liver failure: diversity, plasticity and therapeutic targeting. Front Immunol 2021; 12: 661182. doi: 10.3389/fimmu.2021.661182.

96. Riva A, Mehta G. Regulation of monocyte-macrophage responses in cirrhosis – role of innate immune programming and checkpoint receptors. Front Immunol 2019; 10: 167. doi: 10.3389/fimmu.2019.00167.

97. Lario M, Muňoz L, Ubeda M et al. Defective thymopoiesis and poor peripheral homeostatic replenishment of T-helper cells cause T-cell lymphopenia in cirrhosis. J Hepatol 2013; 59 (4): 723–730. doi: 10.1016/j.jhep.2013.05.042.

98. Noor MT, Manoria P. Immune dysfunction in cirrhosis. J Clin Transl Hepatol 2017; 5 (1): 50–58. doi: 10.14218/JCTH.2016.00056.

99. Riva A, Patel V, Kurioka A et al. Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease. Gut 2018; 67 (5): 918–930. doi: 10.1136/gutjnl-2017-314458.

100. De Biasi S, Gibellini L, Lo Tartaro D et al. Circulating mucosal-associated invariant T cells identify patients responding to anti-PD-1 therapy. Nat Commun 2021; 12 (1): 1669. doi: 10.1038/s41467-021-21928-4.

101. Lebossé F, Gudd C, Tunc E et al. CD8+ T cells from patients with cirrhosis display a phenotype that may contribute to cirrhosis-associated immune dysfunction. EBioMedicine 2019; 49: 258–268. doi: 10.1016/j.ebio­m.2019.10.011.

102. Peter J, Frey O, Stallmach A et al. Attenuated antigen-specific T cell responses in cirrhosis are accompanied by elevated serum interleukin-10 levels and down-regulation of HLA-DR on monocytes. BMC Gastroenterol 2013; 13: 37. doi: 10.1186/1471-230X-13-37.

103. Doi H, Iyer TK, Carpenter E et al. Dysfunctional B-cell activation in cirrhosis resulting from hepatitis C infection associated with disappearance of CD27-positive B-cell population. Hepatology 2012; 55 (3): 709–719. doi: 10.1002/hep.24689.

104. Laso FJ, Madruga JI, Girón JA et al. Decreased natural killer cytotoxic activity in chronic alcoholism is associated with alcohol liver disease but not active ethanol consumption. Hepatology 1997; 25 (5): 1096–1100. doi: 10.1002/hep.510250508.

105. Bernsmeier C, Triantafyllou E, Brenig R et al. CD14+ CD15- HLA-DR- myeloid-derived suppressor cells impair antimicrobial responses in patients with acute-on-chronic liver failure. Gut 2018; 67 (6): 1155–1167. doi: 10.1136/gutjnl-2017-314 184.

106. Oberholzer A, Oberholzer C, Moldawer LL. Interleukin-10: a complex role in the pathogenesis of sepsis syndromes and its potential as an antiinflammatory drug. Crit Care Med 2002; 30 (Suppl 1): S58–S63.

107. Peter J, Frey O, Stallmach A et al. Attenuated antigen-specific T cell responses in cirrhosis are accompanied by elevated serum interleukin-10 levels and down-regulation of HLA-DR on monocytes. BMC Gastroenterol 2013; 13: 37. doi: 10.1186/1471-230X-13-37.

108. Markwick LJ, Riva A, Ryan JM et al. Blockade of PD1 and TIM3 restores innate and adaptive immunity in patients with acute alcoholic hepatitis. Gastroenterology 2015; 148 (3): 590–602.e10. doi: 10.1053/j.gastro.2014.11.041.

109. Rimola A, Soto R, Bory F et al. Reticuloendothelial system phagocytic activity in cirrhosis and its relation to bacterial infections and prognosis. Hepatology 1984; 4 (1): 53–58. doi: 10.1002/hep.1840040109.

110. Sander LE, Sackett SD, Dierssen U et al. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. J Exp Med 2010; 207 (7): 1453–1464. doi: 10.1084/jem.20091474.

111. Maini AA, Becares N, China L et al. Monocyte dysfunction in decompensated cirrhosis is mediated by the prostaglandin E2-EP4 pathway. JHEP Rep 2021; 3 (6): 100332. doi: 10.1016/j.jhepr.2021.100332.

112. O‘Brien A, Fullerton J, Massey K et al. Immunosuppression in acutely decompensated cirrhosis is mediated by prostaglandin E2. Nat Med 2014; 20 (5): 518–523. doi: 10.1038/nm. 3516.

113. Zhou Q, Shi Y, Chen C et al. A narrative review of the roles of indoleamine 2,3-dioxygenase and tryptophan-2,3-dioxygenase in liver diseases. Ann Transl Med 2021; 9 (2): 174. doi: 10.21037/atm-20-3594.

114. Van der Merwe S, Chokshi S, Bernsmeier C et al. The multifactorial mechanisms of bacterial infection in decompensated cirrhosis. J Hepatol 2021; 75 (Suppl 1): S82–S100. doi: 10.1016/j.jhep.2020.11.029.

115. Villanueva C. Bacterial infections in patients with compensated cirrhosis and clinically significant portal hypertension: implications on the risk of developing decompensation and on survival. Hepatology 2019; 70: 36A–37A.

116. Fernández J, Acevedo J, Wiest R et al. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis. Gut 2018; 67 (10): 1870–1880. doi: 10.1136/gutjnl-2017-314240.

Labels
Paediatric gastroenterology Gastroenterology and hepatology Surgery

Article was published in

Gastroenterology and Hepatology

Issue 2

2022 Issue 2

Most read in this issue
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#