#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Whole genome sequencing (WGS) characterisation of Neisseria meningitidis from invasive meningococcal disease in the Czech Republic in 2018–2024 – analysis of the impact of the COVID-19 pandemic


Authors: Z. Okonji 1,2;  M. Honskus 1,2;  M. Musílek 1;  P. Křížová 1
Authors‘ workplace: Národní referenční laboratoř pro meningokokové nákazy, Centrum epidemiologie a mikrobiologie, Státní zdravotní ústav, Praha 1;  3. lékařská fakulta Univerzity Karlovy, Praha 2
Published in: Epidemiol. Mikrobiol. Imunol. 74, 2025, č. 1, s. 20-30
Category: Original Papers
doi: https://doi.org/10.61568/emi/11-6445/20250128/139684

Overview

Objective: To analyse the impact of the COVID-19 pandemic on the epidemiological situation of invasive meningococcal disease (IMD) and molecular characteristics of Neisseria meningitidis isolates causing IMD in the Czech Republic.

Material and Methods: The study was based on IMD surveillance data for 2018–2024 (as of 27 May 2024), and all available N. meningitidis isolates from IMD of these years were subjected to whole genome sequencing (WGS). To analyse the impact of the COVID-19 pandemic, the study period was divided into three parts: the pre-COVID period (2018–2019), the COVID-19 pandemic period (2020–2022), and the post-COVID period (2023–2024).

Results: As a result of the implementation of the COVID-19 control measures, similar to other countries, there has been a decline in the incidence of air-borne infections including IMD in the Czech Republic. However, unlike many other countries, there has not been a resurgence of IMD in the Czech Republic following the release of these epidemiological measures. WGS characterisation of IMD isolates showed a gradual change in the population of meningococci causing IMD in the Czech Republic during the COVID-19 and post-COVID periods. For N. meningitidis isolates of serogroups C, W, and Y, a gradual and significant decline in overall heterogeneity can be observed – from ten different clonal complexes detected in the pre-COVID period to only three in the post-COVID years (cc11, cc23, and cc103). At the same time, a significant reduction was observed in N. meningitidis C isolates; cc11. In contrast, an increase in overall heterogeneity can be observed for N. meningitidis B isolates during the COVID-19 pandemic period, followed by its decline again to overall lowest values in the post-COVID period.

Conclusion: The fact that MenB vaccine and conjugate vaccine A, C, W, Y started to be covered by health insurance for young children (in May 2020) and adolescents (in January 2022) also appears to play a role in the persistent decline of IMD in the Czech Republic. In order to maintain the low incidence of IMD in the Czech Republic, it is desirable to continue vaccination with MenB vaccine and conjugated vaccine A, C, W, Y in accordance with the recommendations of the Czech Society of Vaccinology of the Czech Medical Association of Jan Evangelista Purkyně.

Keywords:

Neisseria meningitidis – whole genome sequencing (WGS) – invasive meningococcal disease (IMD) – impact of the COVID-19 pandemic – impact of vaccination against IMD – MenDeVAR index


Sources
  1. Křížová P, Honskus M, Okonji Z, et al. Analýza epidemiologických a molekulárních dat surveillance invazivního meningokokového onemocnění v České republice za období 1993–2020. Epidemiol Mikrobiol Imunol., 2022;71(3):148–160. PMID: 36257794.
  2. Subbarao S, Campbell H, Ribeiro S, et al. Invasive Meningococcal Disease, 2011–2020, and Impact of the COVID-19 Pandemic, England. Emerg Infect Dis., 2021;27(9):2495-2497. doi: 10.3201/ eid2709.204866. PMID: 34193335.
  3. Alderson MR, Arkwright PD, Bai X, et al. Surveillance and control of meningococcal disease in the COVID-19 era: A Global Meningococcal Initiative review. J Infect., 2022; 84(3):289–296. doi: 10.1016/j.jinf.2021.11.016. PMID: 34838594.
  4. Deghmane AE, Taha MK. Changes in Invasive Neisseria meningitidis and Haemophilus influenzae Infections in France during the COVID-19 Pandemic. Microorganisms. 2022; 10(5):907. doi: 10.3390/microorganisms10050907. PMID: 35630352.
  5. Steens A, Knol MJ, Freudenburg-de Graaf W, et al. Pathogenand Type-Specific Changes in Invasive Bacterial Disease Epidemiology during the First Year of the COVID-19 Pandemic in The Netherlands. Microorganisms. 2022;10(5):972. doi: 10.3390/ microorganisms10050972. PMID: 35630415.
  6. Stein-Zamir C, Shoob H, Abramson N, et al. Invasive Disease Due to Neisseria meningitidis: Surveillance and Trends in Israel Prior to and during the COVID-19 Pandemic. Microorganisms, 2023;11(9):2212. doi: 10.3390/microorganisms11092212. PMID: 37764056.
  7. Brueggemann AB, Jansen van Rensburg MJ, Shaw D, et al. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: a prospective analysis of surveillance data. Lancet Digit Health, 2021;3(6):e360–e370. doi: 10.1016/S2589-7500(21)00077-7. PMID: 34045002.
  8. Shaw D, Abad R, Amin-Chowdhury Z, et al. Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium. Lancet Digit Health, 2023;5(9):e582–e593. doi: 10.1016/S2589-7500(23)00108-5. PMID: 37516557.
  9. Clark SA, Campbell H, Ribeiro S, et al. Epidemiological and strain characteristics of invasive meningococcal disease prior to, during and after COVID-19 pandemic restrictions in England. J Infect., 2023;87(5):385–391. doi: 10.1016/j.jinf.2023.09.002. PMID: 37689395.
  10. Taha S, Hong E, Denizon M, et al. The rapid rebound of invasive meningococcal disease in France at the end of 2022. J Infect Public Health., 2023;16(12):1954–1960. doi: 10.1016/j. jiph.2023.10.001. PMID: 37875044.
  1. Vyhláška č. 389/2023 Sb., o systému epidemiologické bdělosti pro vybraná infekční onemocnění [online]. 2023. Dostupné na www: https://www.zakonyprolidi.cz/cs/2023-389.
  2. Prováděcí rozhodnutí Komise (EU) 2018/945 ze dne 22. června 2018 o přenosných nemocích a souvisejících zvláštních zdravotních problémech, které musí být podchyceny epidemiologickým dozorem, a o příslušných definicích případů [online]. 2018. Dostupné na www: https://eur-lex.europa.eu/legal-content/CS/ TXT/?qid=1551343581293&uri=CELEX:32018D0945.
  3. Národní referenční laboratoř pro meningokokové nákazy. Vybrané publikace [online]. Dostupné na www: https://szu.cz/ odborna-centra-a-pracoviste/centrum-epidemiologie-a-mikrobiologie/oddeleni-bakterialnich-vzdusnych-nakaz/narodni-referencni-laborator-pro-meningokokove-nakazy/vybrane-publikace-nrl-pro-meningokokove-infekce.
  4. Rodrigues CMC, MacDonald L, Ure R, et al. Exploiting Real-Time Genomic Surveillance Data To Assess 4CMenB Meningococcal Vaccine Performance in Scotland, 2015 to 2022. mBio., 2023;14(2):e0049923. doi: 10.1128/mbio.00499-23. PMID:37036356.
  5. Zografaki I, Detsis M, Del Amo M, et al. Invasive meningococcal disease epidemiology and vaccination strategies in four Southern European countries: a review of the available data. Expert Rev Vaccines, 2023;22(1):545–562. doi: 10.1080/14760584.2023.2225596. PMID: 37316234.
  6. Centers for Disease Control and Prevention. Best practice guidelines for diagnosis of Haemophilus influenzae and Neisseria meningitidis disease [online]. CDC manual. 2024. Dostupné na www: https://www.cdc.gov/meningococcal/php/guidance/in- dex.html.
  7. Harrison OB, Claus H, Jiang Y, et al. Description and nomenclature of Neisseria meningitidis capsule locus. Emerg Infect Dis., 2013;19(4):566–573. doi: 10.3201/eid1904.111799. PMID: 23628376.
  8. Honskus M, Křížová P, Okonji Z, et al. Porovnání invazivních a neinvazivních izolátů Neisseria meningitidis metodou sekvenace celého genomu, Česká republika, 2005–2021. Epidemiol Mikrobiol Imunol., 2023;72(2):86–92. PMID: 37344221.
  9. Quick-Start Protocol: QIAamp DNA Mini Kit [online]. Dostupné na www: https://www.qiagen.com/us/resources/resourcede- tail?id=566f1cb1-4ffe-4225-a6de-6bd3261dc920&lang=en.
  10. RBCBioscience. MagCore® Super/HF16 Plus Operation Manual [online]. Dostupné na www: https://www.rbcbioscience.com/ download.htm.
  11. RBCBioscience. MagCore® Genomic DNA Bacterial kit for extraction genomic DNA from Gram-positive and Gram-negative bacteria [online]. Dostupné na www: https://www.rbcbioscience. com/product-detail63.htm.
  12. Zerbino DR. Using the Velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinformatics., 2010; Chapter 11, Unit 11.5. doi: 10.1002/0471250953.bi1105s31.PMID: 20836074.
  13. Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics., 2010;11:595. doi: 10.1186/1471-2105-11-595. PMID: 21143983.
  14. Jolley KA, Bray JE, Maiden MC. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res., 2018;3:124. doi: 10.12688/wellcomeopenres.14826.1. PMID: 30345391.
  15. Jolley KA, Brehony C, Maiden MC. Molecular typing of menin-
  16. Maiden MC, Bygraves JA, Feil E, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A, 1998;95(6):3140–3145. doi: 10.1073/pnas.95.6.3140. PMID: 9501229.
  17. Vernikos G, Medini D. Bexsero® chronicle. Pathog Glob Health. 2014; 108(7):305-316. DOI: 10.1179/2047773214Y.0000000162.PMID: 25417906.
  18. Brehony C, Rodrigues CMC, Borrow R, et al. Distribution of Bexsero® Antigen Sequence Types (BASTs) in invasive meningococcal disease isolates: Implications for immunisation. Vaccine, 2016;34(39):4690–4697. doi: 10.1016/j.vaccine.2016.08.015. PMID: 27521232.
  19. Bratcher HB, Corton C, Jolley KA, et al. A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes. BMC Genomics, 2014;15(1):1138. doi: 10.1186/14712164-15-1138. PMID: 25523208.
  20. Huson DH. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics, 1998; 14(1):68–73. doi: 10.1093/bioinformatics/14.1.68. PMID: 9520503.
  21. Inkscape – Open Source Software [online]. Dostupné na www: https://inkscape.org/.
  22. Rodrigues CMC, Jolley KA, Smith A, et al. Meningococcal Deduced Vaccine Antigen Reactivity (MenDeVAR) Index: a Rapid and Accessible Tool That Exploits Genomic Data in Public Health and Clinical Microbiology Applications. J Clin Microbiol., 2020; 59(1):e02161-20. doi: 10.1128/JCM.02161-20. PMID: 33055180.
  23. Muzzi A, Brozzi A, Serino L, et al. Genetic Meningococcal Antigen Typing System (gMATS): A genotyping tool that predicts 4CMenB strain coverage worldwide. Vaccine, 2019;37(7):991– 1000. doi: 10.1016/j.vaccine.2018.12.061. PMID: 30661831.
  24. Freudenburg-de Graaf W, Knol MJ, van der Ende A. Predicted coverage by 4CMenB vaccine against invasive meningococcal disease cases in the Netherlands. Vaccine, 2020; 38(49):7850– 7857. doi: 10.1016/j.vaccine.2020.10.008. PMID: 33097311.
  25. Lodi L, Moriondo M, Nieddu F, et al. Molecular typing of group B Neisseria meningitidis’ subcapsular antigens directly on biological samples demonstrates epidemiological congruence between culture-positive and -negative cases: A surveillance study of invasive disease over a 13-year period. J Infect., 2021;82(4):28–36. doi: 10.1016/j.jinf.2020.12.034. PMID: 33610687.
  26. Honskus M, Křížová P, Okonji Z, et al. Whole genome analysis of Neisseria meningitidis isolates from invasive meningococcal disease collected in the Czech Republic over 28 years (19932020). PLoS One, 2023;18(3):e0282971. doi: 10.1371/journal. pone.0282971. PMID: 36913385.
  27. Národní zdravotnický informační portál (NZIP). Přehled proočkovanosti vybraných vakcín v rámci krajů a okresů ČR – datový souhrn aktualizován k 27. 02. 2024 [online]. 2024. Dostupné na www: https://www.nzip.cz/clanek/1703-datove-souhrny-prehled-proockovanosti-vybranych-vakcin-kraje-okresy-cr.
  28. Honskus M, Okonji Z, Musilek M, et al. Whole genome sequencing of Neisseria meningitidis W isolates from the Czech Republic recovered in 1984-2017. PLoS One, 2018; 13(9):e0199652. doi: 10.1371/journal.pone.0199652. PMID: 30212468.
  29. Hong E, Terrade A, Muzzi A, et al. Evolution of strain coverage by the multicomponent meningococcal serogroup B vaccine (4CMenB) in France. Hum Vaccin Immunother, 2021; 17(12):5614– 5622. doi: 10.1080/21645515.2021.2004055. PMID: 34856875.
  30. Pollard AJ, MacDonald NE, Dubé E, et al. Presentations at the UK National Immunisation Conference. Hum Vaccin Immunother., 2022;18(7):2087411. doi: 10.1080/21645515.2022.2087411.PMID: 36441135.
  31. Sulis G, Horn M, Borrow R, et al. A comparison of national vaccination policies to prevent serogroup B meningococcal disease. Vaccine, 2022;40(26):3647–3654. doi: 10.1016/j.vaccine.2022.04.101. PMID: 35581099.
  32. Česká vakcinologická společnost ČLS JEP. Doporučení pro očkování proti invazivním meningokokovým onemocněním [online]. 2024. Dostupné na www: https://www.vakcinace.eu/doporuce- ni-a-stanoviska/doporuceni-ceske-vakcinologicke-spolecnosti--cls-jep-pro-ockovani-proti-invazivnim-meningokokovym-1.gococci: recommendations for target choice and nomenclature. FEMS Microbiol Rev., 2007;31(1):89–96. doi: 10.1111/j. 1574-6976.2006.00057.x. PMID: 17168996.

Podpora projektu

Projekt MZ ČR – RVO („Státní zdravotní ústav – SZU, 75010330“). Projekt „Genomická surveillance vybraných infekčních nemocí v České republice“ (Grantová smlouva č. 101113387 – HERA2CZ), který je spolufinancován Evropskou unií.

Do redakce došlo dne 2. 8. 2024.

Adresa pro korespondenci:
MUDr. Pavla Křížová, CSc.
SZÚ Praha Šrobárova 49/48 100 00 Praha 10
e-mail:
pavla.krizova@szu.cz

Labels
Hygiene and epidemiology Medical virology Clinical microbiology

Article was published in

Epidemiology, Microbiology, Immunology


Most read in this issue
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#