Foodborne botulism – a re-emerging public health challenge
Authors:
R. Mezencev 1; C. Klement 2,3
Authors‘ workplace:
Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 303 9, USA
1; Regionálny úrad verejného zdravotníctva zo sídlom v Banskej Bystrici
2; Fakulta verejného zdravotníctva Slovenskej zdravotníckej univerzity, Bratislava
3
Published in:
Epidemiol. Mikrobiol. Imunol. 66, 2017, č. 1, s. 39-48
Category:
Review Article
Overview
Human foodborne botulism is an intoxication caused by ingestion of botulinum neurotoxins (BoNT) of serotypes A, B, E, and rarely also serotype F, produced in contaminated food by anaerobic bacteria Clostridium botulinum group I, group II, or by toxigenic strains of C. butyricum and C. baratii. BoNT-producing Clostridia are ubiquitously distributed in the environment and, under suitable conditions, they can enter the food chain, proliferate and produce BoNT in a variety of foods. In the past, the risk of foodborne botulism was primarily associated with homemade canned foods; however, the epidemiological importance of commercial and restaurant food is increasing nowadays. In this article, we review the public health aspects of foodborne botulism, including its clinical, epidemiological and laboratory diagnosis and discuss potential risks associated with minimally heated, vacuum or modified atmosphere-packed, ready-to-eat foods of extended durability.
KEYWORDS:
Clostridium botulinum – foodborne botulism – botulinum neurotoxins – botulinum toxin – BoNT/A, BoNT/B, BoNT/E – food safety, REPFED – sous-vide – botulism – geography
Sources
1. Patocka J, Splino M, Merka V. Botulism and bioterrorism: how serious is this problem? Acta Medica (Hradec Kralove), 2005;48(1):23–28.
2. Lund B, Baird-Parker AC, Gould GW. The microbiological safety and quality of food. Springer US; 2000.
3. Erbguth FJ. Historical notes on botulism, Clostridium botulinum, botulinum toxin, and the idea of the therapeutic use of the toxin. Mov Disord, 2004;19 Suppl:8S2–6.
4. Erbguth FJ. The pretherapeutic history of botulinum neurotoxin. In: Truong D, Hallett M, Zachary CB, Dressler D Manual of botulinum toxin therapy. Cambridge, UK: Cambridge University Press; 2013; s. 1–8.
5. Bhutani M, Ralph E, Sharpe MD. Acute paralysis following "a bad potato": a case of botulism. Can J Anaesth, 2005;52(4):433–436.
6. Fernandez PS, Peck MW. A predictive model that describes the effect of prolonged heating at 70 to 90 degrees C and subsequent incubation at refrigeration temperatures on growth from spores and toxigenesis by nonproteolytic Clostridium botulinum in the presence of lysozyme. Appl Environ Microbiol, 1999;65(8):3449–3457.
7. King LA, Niskanen T, Junnikkala M, et al. Botulism and hot-smoked whitefish: a family cluster of type E botulism in France, September 2009. Euro Surveill, 2009;14(45).
8. King LA, French Multidisciplinary Outbreak Investigation T. Two severe cases of botulism associated with industrially produced chicken enchiladas, France, August 2008. Euro Surveill, 2008;13(37).
9. Lindstrom M, Vuorela M, Hinderink K, et al. Botulism associated with vacuum-packed smoked whitefish in Finland, June-July 2006. Euro Surveill, 2006;11(7): E060720–060723.
10. Pingeon JM, Vanbockstael C, Popoff MR, et al. Two outbreaks of botulism associated with consumption of green olive paste, France, September 2011. Euro Surveill, 2011;16(49):20035.
11. Jalava K, Selby K, Pihlajasaari A, et al. Two cases of food-borne botulism in Finland caused by conserved olives, October 2011. Euro Surveill, 2011;16(49):20034.
12. Browning LM, Prempeh H, Little C, et al. An outbreak of food-borne botulism in Scotland, United Kingdom, November 2011. Euro Surveill, 2011;16(49):20036.
13. Espelund M, Klaveness D. Botulism outbreaks in natural environments - an update. Front Microbiol, 2014:5287.
14. Lindstrom M, Kiviniemi K, Korkeala H. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing. Int J Food Microbiol, 2006;108(1):92–104.
15. Purves D, Augustine GJ, Fitzpatrick D, et al. Neuroscience: Third Edition. Sunderland, MA, USA: Sinauer Associates, Inc; 2004.
16. Chmelař D. Průvodce lékařskou mikrobioloogii. Ostrava, ČR: Lékařská fakulta Ostravské univerzity; 2012.
17. Gu S, Jin R. Assembly and function of the botulinum neurotoxin progenitor complex. Curr Top Microbiol Immunol, 2013;3:6421–36444.
18. Peng Chen Z, Morris JG, Jr., Rodriguez RL, et al. Emerging opportunities for serotypes of botulinum neurotoxins. Toxins (Basel), 2012;4(11):1196–1222.
19. Peng L, Liu H, Ruan H, et al. Cytotoxicity of botulinum neurotoxins reveals a direct role of syntaxin 1 and SNAP-25 in neuron survival. Nat Commun, 2013;41472.
20. Peck MW, Stringer SC, Carter AT. Clostridium botulinum in the post-genomic era. Food Microbiol, 2011;28(2):183–191.
21. Maslanka SE, Luquez C, Dykes JK, et al. A Novel Botulinum Neurotoxin, Previously Reported as Serotype H, Has a Hybrid-Like Structure With Regions of Similarity to the Structures of Serotypes A and F and Is Neutralized With Serotype A Antitoxin. J Infect Dis, 2016;213(3):379–385.
22. Phillips KA, Milne RL, Rookus MA, et al. Tamoxifen and risk of contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. J Clin Oncol, 2013;31(25):3091–3099.
23. Peng L, Berntsson RP, Tepp WH, et al. Botulinum neurotoxin D-C uses synaptotagmin I and II as receptors, and human synaptotagmin II is not an effective receptor for type B, D-C and G toxins. J Cell Sci, 2012;125(Pt 13):3233–3242.
24. Whitemarsh RCM, Tepp WH, Bradshaw M, et al. Characterization of Botulinum Neurotoxin A Subtypes 1 Through 5 by Investigation of Activities in Mice, in Neuronal Cell Cultures, and In Vitro. Infection and Immunity, 2013;81(10):3894–3902.
25. Maselli RA. Pathogenesis of human botulism. Ann N Y Acad Sci, 1998;841:122–139.
26. Lamanna C. The most poisonous poison. Science, 1959;130(3378):763–772.
27. Couesnon A, Raffestin S, Popoff MR. Expression of botulinum neurotoxins A and E, and associated non-toxin genes, during the transition phase and stability at high temperature: analysis by quantitative reverse transcription-PCR. Microbiology, 2006;152(Pt 3):759–770.
28. Gimenez DF, Gimenez JA. Serological subtypes of botulinal neurotoxins. In: DasGupta BR Botulism and tetanus neurotoxins: neurotransmission and biomedical aspects. New York, NY: Plenum Press; 1993; s. 421–431.
29. Carter AT, Peck MW. Genomes, neurotoxins and biology of Clostri-dium botulinum Group I and Group II. Res Microbiol, 2015;166(4):303–317.30. Lund BM, Wyatt GM. The effect of redox potential, and its interaction with sodium chloride concentration, on the probability of growth of Clostridium botulinum type E from spore inocula. Food Microbiology,1984;1(1):49–65.
31. Sobel J. Botulism. Clin Infect Dis, 2005;41(8):1167–1173.
32. Ault A. New botulinum toxin injection warnings issued: postinjection symptoms include dysphagia, ptosis andf shortness of breath, according to the FDA Skin. Allergy News, 2008; 39(13).
33. Foster KA. Molecular aspects of botulinum neurotoxin. New York: Springer; 2014.
34. Franciosa G, Aureli P, Schechter R. Clostridium botulinum. In: Miliotis MD, Bier JW International handbook of foodborne pathogens. New York - Basel: Marcel Dekker, Inc.; 2003.
35. Fagan RP, McLaughlin JB, Castrodale LJ, et al. Endemic foodborne botulism among Alaska Native persons – Alaska, 1947-2007. Clin Infect Dis, 2011;52(5):585–592.
36. Sobel J, Tucker N, Sulka A, et al. Foodborne botulism in the United States, 1990–2000. Emerg Infect Dis, 2004;10(9):1606–1611.
37. Daniel L, Joe F, Judith LI-R, et al. Foodborne Botulism in Canada, 1985–2005. Emerging Infectious Disease journal, 2013;19(6):961.
38. Hauschild AHW. Epidemiology of human foodborne botulism. In: Hauschild AHW, Dodds KL Clostridium botulinum: ecology and control in foods. New York, NY: Marcel Dekker; 1992: 69–102.
39. Smith TJ. Clostridium botulinum genomes and genetic diversity. New York: Springer; 2014.
40. Eleopra R, Montecucco C, Devigili G, et al. Botulinum neurotoxin serotype D is poorly effective in humans: an in vivo electrophysiological study. Clin Neurophysiol, 2013;124(5):999–1004.
41. Alimentární onemocnění (infekce a otravy z potravin) [online]. [cit. 2016-07-17]. Dostupné na www: <http://czvp.szu.cz/vedvybor/dokumenty/studie/alim_2005_1_deklas_rev2.pdf>
42. Šrámová H, Beneš Č, Václavík I. Výskyt botulismu v České republice. Čas Lék Česk, 1991;130(4):103–107.
43. Šrámová H, Beneš Č. Výskyt botulismu v České republice v období 1990-1998. Prakt Lék, 1999;79(5):260–263.
44. Miliotis MD, Bier JW. International Handbook of Foodborne Pathogens. New York, NY: Marcel Dekker, Inc.; 2003.
45. Brola W, Fudala M, Gacek S, Gruenpeter P. Food-borne botulism: still actual topic. BMJ Case Rep, 2013;2013.
46. Czerwinski M, Czarkowski MP, Kondej B. Foodborne botulism in Poland in 2111. Przegl Epidemiol, 2013;67(2):231–234, 343–235.
47. Czerwinski M, Czarkowski MP, Kondej B. Foodborne botulism in Poland in 2013. Przegl Epidemiol, 2015;69(2):243–245, 363–245.
48. Bhunia A. Clostridium botulinum and Clostridium perfringens. In: Foodborne microbial pathogens: Mechanisms and Pathogenesis. Springer; 2008; s. 149–164.
49. Sobel J, Malavet M, John S. Outbreak of clinically mild botulism type E illness from home-salted fish in patients presenting with predominantly gastrointestinal symptoms. Clin Infect Dis, 2007;45(2):e14–16.
50. Foran PG, Mohammed N, Lisk GO, et al. Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with the long lasting type A. Basis for distinct durations of inhibition of exocytosis in central neurons. J Biol Chem, 2003;278(2):1363–1371.
51. Hughes JM, Blumenthal JR, Merson MH, et al. Clinical features of types A and B food-borne botulism. Ann Intern Med, 1981;95(4):442–445.
52. Scharff RL. Economic burden from health losses due to foodborne illness in the United States. J Food Prot, 2012;75(1):123–131.
53. Lamanna C, Carr CJ. The botulinal, tetanal, and enterostaphylococcal toxins: a review. Clin Pharmacol Ther, 1967;8(2):286–332.
54. Rogers DE, Koenig MG, Spickard A. Clinical and Laboratory Manifestations of Type E Botulism in Man. Trans Assoc Am Physicians, 1964;77135–77144.
55. Beller M, Middaugh JP. Repeated type E botulism in an Alaskan Eskimo. N Engl J Med, 1990;322(12):855.
56. Wainwright RB, Heyward WL, Middaugh JP, et al. Food-borne botulism in Alaska, 1947–1985: epidemiology and clinical findings. J Infect Dis, 1988;157(6):1158–1162.
57. St Louis ME, Peck SH, Bowering D, et al. Botulism from chopped garlic: delayed recognition of a major outbreak. Ann Intern Med, 1988;108(3):363–368.
58. Lindstrom M, Korkeala H. Laboratory diagnostics of botulism. Clin Microbiol Rev, 2006;19(2):298–314.
59. Hatheway CL, Johnson EA. Clostridium: the spore-bearing anaerobes. In: Collier L, Balows A, Sussman M Topley&Wilson's Microbiology and microbial infections. New York, NY: Oxford University Press; 1998; s. 732–782.
60. Solomon HM, Lillz TJ. Clostridium botulinum. In: Bacteriological Analytical Manual. 1998.
61. Leclair D, Fung J, Isaac-Renton JL et al. Foodborne botulism in Canada, 1985–2005. Emerg Infect Dis, 2013;19(6):961–968.
62. Cherington M. Electrophysiologic methods as an aid in diagnosis of botulism: a review. Muscle Nerve, 1982;5(9S):S28–29.
63. Anlar O, Irmak H, Tombul T, et al. Food-borne botulism cases in Van region in eastern Turkey: importance of electromyography in the diagnosis. Electromyogr Clin Neurophysiol, 2003;43(6):373–376.
64. Cherington M. Clinical spectrum of botulism. Muscle Nerve, 1998;21(6):701–710.
65. Kotan D, Aygul R, Ceylan M, Yilikoglu Y. Clinically and electrophysio-logically diagnosed botulinum intoxication. BMJ Case Rep, 2013;2013.
66. McLauchlin J, Grant KA, Little CL. Food-borne botulism in the United Kingdom. J Public Health (Oxf), 2006;28(4):337–342.
67. Tacket CO, Shandera WX, Mann JM, et al. Equine antitoxin use and other factors that predict outcome in type A foodborne botulism. Am J Med, 1984;76(5):794–798.
68. Yasmin S, Adams L, Briggs G, et al. Outbreak of Botulism After Consumption of Illicit Prison-Brewed Alcohol in a Maximum Security Prison – Arizona, 2012. J Correct Health Care, 2015;21(4):327–334.
69. Sevenier V, Delannoy S, Andre S, et al. Prevalence of Clostridium botulinum and thermophilic heat-resistant spores in raw carrots and green beans used in French canning industry. Int J Food Microbiol, 2012;155(3):263–268.
70. O'Mahony M, Mitchell E, Gilbert RJ, et al. An outbreak of foodborne botulism associated with contaminated hazelnut yoghurt. Epidemiol Infect, 1990;104(3):389–395.
71. Hatheway CL. Botulism: the present status of the disease. In: Montecucco C Clostridial neurotoxins. Berlin: Springer; 1995; s. 55–75.
72. Juliao PC, Maslanka S, Dykes J, et al. National outbreak of type a foodborne botulism associated with a widely distributed commercially canned hot dog chili sauce. Clin Infect Dis, 2013;56(3):376–382.
73. Sachdeva A, Defibaugh-Chavez SL, Day JB, et al. Detection and confirmation of Clostridium botulinum in water used for cooling at a plant producing low-acid canned foods. Appl Environ Microbiol, 2010;76(22):7653–7657.
74. Deibel KE, Jantschke M. Canned foods-tests for commercial sterility. In: Downes FP, Ito K Compendium of methods for the microbiological examination of foods. Washington, DC: Am. Public Health Assoc.; 2001; s. 577–582.
75. Stumbo CR, Purohit KS, Ramakrishnan TV. Thermal process lethality guide for low-acid-foods in metal containers. J Food Sci, 1975;40(6):1316–1323.
76. Anderson NM, Larkin JW, Cole MB, et al. Food safety objective approach for controlling Clostridium botulinum growth and toxin production in commercially sterile foods. J Food Prot, 2011;74(11):1956–1989.
77. Lindstrom M, Keto-Timonen R, Korkeala H. Botulinum Neurotoxin Risks and Detection in Environment, Agriculture and Food Chains. In: Foster KA Molecular aspects of botulinum neurotoxin. New York, NY: Springer; 2014; s. 229–258.
78. Peck MW. Clostridium botulinum and the safety of minimally heated, chilled foods: an emerging issue? J Appl Microbiol, 2006;101(3):556–570.
79. Smelt JPPM, Haas H. Behavior of proteolytic Clostridium Botulinum type-A and type-B near lower temperature limits of growth. Eur J Appl Microbiol, 1978;5(2):143–154.
80. Richardson P. In-Pack processed foods. Improving quality. In: England: Woodhead Publishing Limited; 2008.
81. Glass KA, Johnson EA. Formulating low-acid foods for botulinal safety. In: Juneja VK, Sofos JN Control of foodborne microorganisms. Boca Raton, FL: CRC Press; 2001: 323–350.
82. Peck MW, Lund BM, Fairbairn DA, et al. Effect of heat treatment on survival of, and growth from, spores of nonproteolytic Clostridium botulinum at refrigeration temperatures. Appl Environ Microbiol, 1995;61(5):1780–1785.
83. Graham AF, Mason DR, Maxwell FJ, Peck MW. Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature. Lett Appl Microbiol, 1997;24(2):95–100.
84. Peck MW, Fairbairn DA, Lund BM. Heat-resistance of spores of non-proteolytic Clostridium botulinum estimated on medium containing lysozyme. Lett Appl Microbiol, 1993;16(3):126–131.
85. Peck MW, Goodburn KE, Betts RP, Stringer SC. Assessment of the potential for growth and neurotoxin formation by non-proteolytic Clostridium botulinum in short shelf-life commercial foods designed to be stored chilled. Trends Food Sci Tech, 2008;19(4):207–216.
86. Graham AF, Mason DR, Peck MW. Predictive model of the effect of temperature, pH and sodium chloride on growth from spores of non-proteolytic Clostridium botulinum. Int J Food Microbiol, 1996;31(1–3):69–85.
87. Lund BM, Notermans SHW. Potential hazards associated with REPFEDs. In: Hauschild AHW, Dodds KL Clostridium botulinum. Ecology and control in foods. New York, NY: Marcel Dekker Inc; 1993; s. 279–303.
88. Woodburn MJ, Somers E, Rodriguez J, Schantz EJ. Heat inactivation rates of botulinum toxins A, B, E and F in some foods and buffers. J Food Sci, 1979;44(6):1658–1661.
89. USDA Complete guide to home canning, 2015 revision. In: USDA Publications. USDA Publications; 2015.
90. Rossetto O, Pirazzini M, Montecucco C. Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol, 2014;12(8):535–549.
91. Hatheway CL. Clostridium botulinum and other clostridia that produce botulinum neurotoxin. In: Hauschild AHW, Dodds KL Clostridium botulinum: Ecology and Control in Food. New York: Marcel Dekker Inc; 1993; s. 3–20.
Labels
Hygiene and epidemiology Medical virology Clinical microbiologyArticle was published in
Epidemiology, Microbiology, Immunology
2017 Issue 1
Most read in this issue
- Management of acute anaphylaxis in clinical practice in the context of the guidelines
- The prevalence of antibodies against Hepatitis E Virus in the Czech Republic: serological survey
- Foodborne botulism – a re-emerging public health challenge
- Infectious diseases and laboratory diagnosisin the Terezin Jewish Ghetto