Efekt bimanuální senzorické rukavice a unimanuální roboticky asistované terapie na funkci horní končetiny po cévní mozkové příhodě
Authors:
K. Hoidekrová 1-3; V. Rogalewicz 1; M. M. Jahromi 4; M. Sobrova 2; D. Pavlů 3
Authors‘ workplace:
Department of Rehabilitation Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
1; Kladruby Rehabilitation Centre, Kladruby u Vlašimi, Czech Republic
2; Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
3; Third Faculty of Medicine, Charles University, Prague, Czech Republic
4
Published in:
Cesk Slov Neurol N 2024; 87(2): 114-121
Category:
Original Paper
doi:
https://doi.org/10.48095/cccsnn2024114
Overview
Úvod: Porucha funkce horní končetiny u pacientů po CMP významně ovlivňuje provádění běžných denních činností (activities of daily living; ADL). Většina ADL je bimanuální, zatímco mnoho konvenčních ergoterapeutických technik je založeno na unimanuálním přístupu. Cílem studie je porovnat dlouhodobé účinky bimanuální a unimanuální roboticky asistované terapie na funkci horní končetiny u pacientů po CMP. Metoda: Pacienti po CMP (n = 40) byli náhodně rozděleni do dvou skupin: roboticky asistovaná bimanuální terapie (BRAT, n = 20) a roboticky asistovaná unimanuální terapie (URAT, n = 20). Terapie trvala 3 týdny a probíhala 5 dní v týdnu, 30 min denně pro obě skupiny. Výsledky intervence byly hodnoceny pomocí Upper Extremity Motor Activity Log (UE MAL) a Motor Assessment Scale (MAS) v časech T0, T1 a T2 (jednoměsíční sledování). K posouzení svalové síly byl použit Motricity Index (MI). Výsledky: BRAT statisticky významně zlepšila funkci horní končetiny v kategorii 7-Hand motion (v T2) a 8-Advantage hand motion (v T1 a T2) dle MAS. Závěr: BRAT má pozitivní vliv na jemnou motoriku a funkci horní končetiny po dokončení terapie a dokonce i po jednoměsíčním sledování. Použití BRAT v kombinaci s konvenční terapií může být účinné při obnově funkce horní končetiny u pacientů po cévní mozkové příhodě se středně těžkou až těžkou hemiparézou.
Klíčová slova:
cévní mozková příhoda – hemiparéza – rehabilitace – senzorická rukavice – běžné denní činnosti – bilaterální roboticky asistovaná terapie
Sources
1. Trlep M, Mihelj M, Puh U et al. Rehabilitation robot with patient-cooperative control for bimanual training of hemiparetic subjects. Advanced Robotics 2011; 25: 1949–1968. doi: 10.1163/016918611X588853.
2. Calabrò RS, Accorinti M, Porcari B et al. Does hand robotic rehabilitation improve motor function by rebalancing interhemispheric connectivity after chronic stroke? Encouraging data from a randomised-clinical-trial. Clin Neurophys 2019; 130 (5): 767–780. doi: 10.1016/j.clinph.2019.02.013.
3. Cruz EG, Waldinger HC, Kamper DG. Kinetic and kinematic workspaces of the index finger following stroke. Brain 2005; 128 (Pt 5): 1112–1121. doi: 10.1093/brain/awh432.
4. Jan S, Arsh A, Darain H et al. A randomized control trial comparing the effects of motor relearning programme and mirror therapy for improving upper limb motor functions in stroke patients. J Pak Med Assoc 2019; 69 (9): 1242–1245.
5. Beebe JA, Lang CE. Active range of motion predicts upper extremity function 3 months after stroke. Stroke 2009; 40 (5): 1772–1779. doi: 10.1161/STROKEAHA.108. 536763.
6. Coupar F, Pollock A, van Wijck F et al. Simultaneous bilateral training for improving arm function after stroke. Cochrane Database Syst Rev 2010; 2010 (4): CD006432. doi: 10.1002/14651858.CD006432.pub2.
7. Johnson MJ. Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke. J Neuroeng Rehabil 2006; 3: 29. doi: 10.1186/1743-0003-3-29.
8. Chu C-Y, Patterson RM. Soft robotic devices for hand rehabilitation and assistance: a narrative review. J Neuroeng Rehabil 2018; 15 (1): 9. doi: 10.1186/s12984-018-0350-6.
9. Chen Y-M, Lai S-S, Pei Y-C et al. Development of a novel task-oriented rehabilitation program using a bimanual exoskeleton robotic hand. J Vis Exp 2020; 159. doi: 10.3791/61057.
10. Lee H-C, Kuo F-L, Lin Y-N et al. Effects of robot-assisted rehabilitation on hand function of people with stroke: a randomized, crossover-controlled, assessor-blinded study. Am J Occup Ther 2021; 75 (1): 7501205020p1–7501205020p11. doi: 10.5014/ajot.2021. 038232.
11. Villafañe JH, Taveggia G, Galeri S et al. Efficacy of short-term robot-assisted rehabilitation in patients with hand paralysis after stroke: a randomized clinical trial. Hand 2018; 13 (1): 95–102. doi: 10.1177/1558944717692096.
12. Chien W, Chong Y, Tse M et al. Robot-assisted therapy for upper-limb rehabilitation in subacute stroke patients: a systematic review and meta-analysis. Brain Behav 2020; 10 (8): e01742. doi: 10.1002/brb3.1742.
13. Cauraugh JH, Lodha N, Naik SK et al. Bilateral movement training and stroke motor recovery progress: a structured review and meta-analysis. Hum Mov Sci 2010; 29 (5): 853–870. doi: 10.1016/j.humov.2009.09.004.
14. National Stroke Foundation. Clinical guidelines for stroke management 2010. [online]. Available from: https: //extranet.who.int/ncdccs/Data/AUS_D1_Clinical%20Guidelines%20for%20Stroke%20Manage- ment.pdf.
15. Vilimovsky T, Chen P, Hoidekrova K et al. Prism adaptation treatment to address spatial neglect in an intensive rehabilitation program: a randomized pilot and feasibility trial. PLoS One 2021; 16 (1): e0245425. doi: 10.1371/journal.pone.0245425.
16. Bergego C, Azouvi P, Samuel C et al. Functional consequences of unilateral neglect: validation of an evaluation scale, the CB scale. Ann Med Phys Readaptation 1995; 38: 183–189. doi: 10.1016/0168-6054 (96) 89317-2.
17. Gauthier L, Dehaut F, Joanette Y. The Bells Test: a quantitative and qualitative test for visual neglect. Int J Clin Neuropsychol 1989; 11 (2): 49–54.
18. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Physical therapy 1987; 67 (2): 206–207. doi: 10.1093/ptj/67.2.206.
19. Bressi F, Santacaterina F, Cricenti L et al. Robotic-assisted hand therapy with gloreha sinfonia for the improvement of hand function after pediatric stroke: a case report. Appl Sci 2022; 12 (9): 4206. doi: 10.3390/ app12094206.
20. Carr JH, Shepherd RB, Nordholm L et al. Investigation of a new motor assessment scale for stroke patients. Phys Ther 1985; 65 (2): 175–180. doi: 10.1093/ptj/65.2.175.
21. Chen H, Lin K, Hsieh Y et al. A study of predictive validity, responsiveness, and minimal clinically important difference of arm accelerometer in real-world activity of patients with chronic stroke. Clin Rehabil 2018; 32 (1): 75–83. doi: 10.1177/0269215517712042.
22. Collin C, Wade D. Assessing motor impairment after stroke: a pilot reliability study. J Neurol Neurosurg Psychiatry 1990; 53 (7): 576–579. doi: 10.1136/jnnp.53.7.576.
23. Hsu C-Y, Wu C-M, Huang C-C et al. Feasibility and potential effects of robot-assisted passive range of motion training in combination with conventional rehabilitation on hand function in patients with chronic stroke. J Rehabil Med 2022; 54: jrm00323. doi: 10.2340/jrm.v54. 1407.
24. Blennerhassett JM, Gyngell K, Crean R. Reduced active control and passive range at the shoulder increase risk of shoulder pain during inpatient rehabilitation post-stroke: an observational study. J Physiother 2010; 56 (3): 195–199. doi: 10.1016/S1836-9553 (10) 70025-4.
25. Wu C, Yang C, Chuang L et al. Effect of therapist-based versus robot-assisted bilateral arm training on motor control, functional performance, and quality of life after chronic stroke: a clinical trial. Phys Ther 2012; 92 (8): 1006–1016. doi: 10.2522/ptj.20110282.
26. Yuan R, Qiao X, Tang C et al. Effects of uni- vs. bilateral upper limb robot-assisted rehabilitation on motor function, activities of daily living, and electromyography in hemiplegic stroke: a single-blinded three-arm randomized controlled trial. J Clin Med 2023; 12 (8): 2950. doi: 10.3390/jcm12082950.
27. Bissolotti L, Villafañe JH, Gaffurini P et al. Changes in skeletal muscle perfusion and spasticity in patients with poststroke hemiparesis treated by robotic assistance (Gloreha) of the hand. J Phys Ther Sci 2016; 28 (3): 769–773. doi: 10.1589/jpts.28.769.
28. Bernocchi P, Mulè C, Vanoglio F et al. Home-based hand rehabilitation with a robotic glove in hemiplegic patients after stroke: a pilot feasibility study. Top Stroke Rehabil 2018; 25 (2): 114–119. doi: 10.1080/10749 357.2017.1389021.
29. Giulia M, Francesca M, Simone T et al. Is passive mobilization robot-assisted therapy effective in upper limb motor recovery in patients with acquired brain injury? A randomized crossover trial. Int J Phys Ther Rehabil 2016; 2 (2): 114. doi: 10.15344/2455-7498/2016/114.
30. Vanoglio F, Bernocchi P, Mulè C et al. Feasibility and efficacy of a robotic device for hand rehabilitation in hemiplegic stroke patients: a randomized pilot controlled study. Clin Rehabil 2017; 31 (3): 351–360. doi: 10.1177/0269215516642606.
31. Zhang L, Jia G, Ma J et al. Short and long-term effects of robot-assisted therapy on upper limb motor function and activity of daily living in patients post-stroke: a meta-analysis of randomized controlled trials. J Neuroeng Rehabil 2022; 19 (1): 76. doi: 10.1186/s12984-022-01058-8.
32. Krebs HI, Volpe BT, Williams D et al. Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2007; 15 (3): 327–335. doi: 10.1109/TNSRE.2007.903899.
33. Moulaei K, Bahaadinbeigy K, Haghdoostd AA et al. Overview of the role of robots in upper limb disabilities rehabilitation: a scoping review. Arch Public Health 2023; 81 (1): 84. doi: 10.1186/s13690-023-01100-8.
34. Choi J-B, Yang S-W, Ma S-R. The effect of action observation combined with motor imagery training on upper extremity function and corticospinal excitability in stroke patients: a randomized controlled trial. Int J Environ Res Public Health 2022; 19 (19): 12048. doi: 10.3390/ijerph191912048.
35. Bressi F, Cricenti L, Campagnola B et al. Effects of robotic upper limb treatment after stroke on cognitive patterns: a systematic review. NeuroRehabilitation 2022; 51 (4): 541–558. doi: 10.3233/NRE-220149.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2024 Issue 2
Most read in this issue
- Factors influencing the outcome in patients with cauda equina syndrome
- Course of myelin oligodendrocyte glycoprotein-associated disease (MOGAD) – a cohort of patients
- Neurosurgical interventions during pregnancy
- Eff ect of bimanual sensor glove and unimanual robot-assisted therapy for upper limb function after stroke