#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The effect of chemotherapy on cognitive functions in children with leukemia


Authors: P. Lhotová 1;  L. Šrámková 2;  P. Smíšek 2;  T. Nikolai 1
Authors‘ workplace: Neuropsychologická laboratoř, Neurologická klinika a Centrum klinických neurověd, 1. LF UK a VFN v Praze 1;  Klinika dětské hematologie a onkologie 2. LF UK a FN Motol, Praha 2
Published in: Cesk Slov Neurol N 2023; 86(6): 369-374
Category: Review Article
doi: https://doi.org/10.48095/cccsnn2023369

Overview

Leukemia is one of the most common childhood diseases with a malignant course. Fortunately, today there is a high probability of its successful cure. The nature of the disease entails a high risk of initial spread, or later relapse of the disease into the central nervous system. Standard treatment including intrathecal application of cytostatics reduces this risk fundamentally; nevertheless it can damage some cognitive functions. There is extensive research dealing with this issue. Through a systematic literature research, we selected 16 articles that examined cognitive functions through neuropsychological tests. Result analysis indicates a statistically significant decrease in performance in tests of attention, processing speed, working memory and executive functions. Conversely, the overall intelligence quotient, learning ability and long-term memory seem to be only slightly affected by the treatment.

Keywords:

Chemotherapy – Intelligence – cognitive function – leukemia – pediatric hematology/oncology


Sources

1. Ssenyonga N, Stiller C, Nakata K et al. Worldwide trends in population-based survival for children, adolescents, and young adults diagnosed with leukaemia, by subtype, during 2000–14 (CONCORD-3): analysis of individual data from 258 cancer registries in 61 countries. Lancet Child Adolesc Health 2022; 6 (6): 409–431. doi: 10.1016/S2352-4642 (22) 00095-5.

2. World Health Organization. CureAll framework: WHO global initiative for childhood cancer: increasing access, advancing quality, saving lives. [online]. Dostupné z: https: //www.medscape.co.uk/viewarticle/who-childhood-cancer-2023a1000it6.

3. Pritchard-Jones K, Pieters R, Reaman GH et al. Sustaining innovation and improvement in the treatment of childhood cancer: lessons from high-income countries. Lancet Oncol 2013; 14 (3): e95–e103. doi: 10.1016/S1470-2045 (13) 70010-X.

4. Kaplan JA. Leukemia in children. Pediatr Rev 2019; 40 (7): 319–331. doi: 10.1542/pir.2018-0192.

5. Steliarova-Foucher E, Fidler MM, Colombet M et al. Changing geographical patterns and trends in cancer incidence in children and adolescents in Europe, 1991–2010 (Automated Childhood Cancer Information System): a population-based study. Lancet Oncol 2018; 19 (9): 1159–1169. doi: 10.1016/S1470-2045 (18) 30423-6.

6. Heidari N, Saki N, De Filippis L et al. Central nervous system niche involvement in the leukemia. Clin Transl Oncol 2016; 18 (3): 240–250. doi: 10.1007/s12094-015-1370-3.

7. Starý J. Akutní leukemie u dětí. Solen 2010; 4 (2): 120–124.

8. Jain P, Gulati S, Seth R et al. Vincristine-induced neuropathy in childhood ALL (acute lymphoblastic leukemia) survivors: prevalence and electrophysiological characteristics. J Child Neurol 2014; 29 (7): 932–937. doi: 10.1177/0883073813491829.

9. Kroczka S, Stepien K, Witek-Motyl I et al. Polyneuropathy in acute lymphoblastic leukemia long-term survivors: clinical and electrophysiological characteristics with the impact of radiotherapy. Front Pediatr 2021; 8: 526235. doi: 10.3389/fped.2020.526235.

10. Ahn MB, Suh B-K. Bone morbidity in pediatric acute lymphoblastic leukemia. Ann Pediatr Endocrinol Metab 2020; 25 (1): 1–9. doi: 10.6065/apem.2020. 25.1.1.

11. Rossi F, Tortora C, Paoletta M et al. Osteoporosis in childhood cancer survivors: physiopathology, prevention, therapy and future perspectives. Cancers 2022; 14 (18): 4349. doi: 10.3390/cancers14184349.

12. Deak D, Gorcea-Andronic N, Sas V et al. A narrative review of central nervous system involvement in acute leukemias. Ann Transl Med 2021; 9 (1): 68. doi: 10.21037/atm-20-3140.

13. Jin M-W, Xu S-M, An Q. Central nervous disease in pediatric patients during acute lymphoblastic leukemia (ALL): a review. Eur Rev Med Pharmacol Sci 2018; 22 (18): 6015–6019. doi: 10.26355/eurrev_201809_15937.

14. Lenk L, Alsadeq A, Schewe DM. Involvement of the central nervous system in acute lymphoblastic leukemia: opinions on molecular mechanisms and clinical implications based on recent data. Cancer Metastasis Rev 2020; 39 (1): 173–187. doi: 10.1007/s10555-020-09848-z.

15. Pui C-H, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med 2006; 354 (2): 166–178. doi: 10.1056/NEJMra052603.

16. Wilejto M, Giuseppe GD, Hitzler J et al. Treatment of young children with CNS-positive acute lymphoblastic leukemia without cranial radiotherapy. Pediatr Blood Cancer 2015; 62 (11): 1881–1885. doi: 10.1002/ pbc.25620.

17. Swaiman KF, Ashwal S, Ferriero DM et al. Swaiman’s pediatric neurology: principles and practice. Edinburgh, New York: Elsevier 2018.

18. Merli P, Algeri M, Del Bufalo F et al. Hematopoietic stem cell transplantation in pediatric acute lymphoblastic leukemia. Curr Hematol Malig Rep 2019; 14 (2): 94–105. doi: 10.1007/s11899-019-00502-2.

19. Reddick WE, Shan ZY, Glass JO et al. Smaller white-matter volumes are associated with larger deficits in attention and learning among long-term survivors of acute lymphoblastic leukemia. Cancer 2006; 106 (4): 941–949. doi: 10.1002/cncr.21679.

20. Rijmenams I, Moechars D, Uyttebroeck A et al. Age- and intravenous methotrexate-associated leukoencephalopathy and its neurological impact in pediatric patients with lymphoblastic leukemia. Cancers 2021; 13 (8): 1939. doi: 10.3390/cancers13081939.

21. Zeller B, Tamnes CK, Kanellopoulos A et al. Reduced neuroanatomic volumes in long-term survivors of childhood acute lymphoblastic leukemia. J Clin Oncol 2013; 31 (17): 2078–2085. doi: 10.1200/JCO.2012.47.4031.

22. Bhojwani D, Sabin ND, Pei D et al. Methotrexate-induced neurotoxicity and leukoencephalopathy in childhood acute lymphoblastic leukemia. J Clin Oncol 2014; 32 (9): 949–959. doi: 10.1200/JCO.2013.53.0808.

23. Cheung YT, Sabin ND, Reddick WE et al. Leukoencephalopathy and long-term neurobehavioural, neurocognitive, and brain imaging outcomes in survivors of childhood acute lymphoblastic leukaemia treated with chemotherapy: a longitudinal analysis. Lancet Haematol 2016; 3 (10): e456–e466. doi: 10.1016/S2352-3026 (16) 30110-7.

24. Lisá IA, Lisý Ľ. Akútne leukoencefalopatie – diferenciálna diagnostika. Neurol Praxi 2007; 2: 94–98.

25. Lofstad GE, Reinfjell T, Weider S et al. Neurocognitive outcome and compensating possibilities in children and adolescents treated for acute lymphoblastic leukemia with chemotherapy only. Front Psychol 2019; 10: 1027. doi: 10.3389/fpsyg.2019.01027.

26. Chiou S, Lin P, Liao Y et al. A cross-sectional follow-up study of physical morbidities, neurocognitive function, and attention problems in post-treatment childhood acute lymphoblastic leukemia survivors. Kaohsiung J Med Sci 2019; 35 (6): 373–378. doi: 10.1002/kjm2.12061.

27. Conklin HM, Krull KR, Reddick WE et al. Cognitive outcomes following contemporary treatment without cranial irradiation for childhood acute lymphoblastic leukemia. J Natl Cancer Inst 2012; 104 (18): 1386–1395. doi: 10.1093/jnci/djs344.

28. Edelmann MN, Krull KR, Liu W et al. Diffusion tensor imaging and neurocognition in survivors of childhood acute lymphoblastic leukaemia. Brain 2014; 137 (11): 2973–2983. doi: 10.1093/brain/awu230.

29. Genschaft M, Huebner T, Plessow F et al. Impact of chemotherapy for childhood leukemia on brain morphology and function. PLoS One 2013; 8 (11): e78599. doi: 10.1371/journal.pone.0078599.

30. Jacola LM, Krull KR, Pui C-H et al. Longitudinal assessment of neurocognitive outcomes in survivors of childhood acute lymphoblastic leukemia treated on a contemporary chemotherapy protocol. J Clin Oncol 2016; 34 (11): 1239–1247. doi: 10.1200/JCO.2015.64.3205.

31. Kanellopoulos A, Andersson S, Zeller B et al. Neurocognitive outcome in very long-term survivors of childhood acute lymphoblastic leukemia after treatment with chemotherapy only. Pediatr Blood Cancer 2016; 63 (1): 133–138. doi: 10.1002/pbc.25690.

32. Koerner KM, Insel KC, Hockenberry MJ et al. Impact of childhood leukemia treatment on attention measured by the continuous performance test factor structure. Oncol Nurs Forum 2019; 46 (4): E98–E106. doi: 10.1188/19.ONF.E98-E106.

33. Krull KR, Brinkman TM, Li C et al. Neurocognitive outcomes decades after treatment for childhood acute lymphoblastic leukemia: a report from the St Jude lifetime cohort study. J Clin Oncol 2013; 31 (35): 4407–4415. doi: 10.1200/JCO.2012.48.2315.

34. Krull KR, Cheung YT, Liu W et al. Chemotherapy pharmacodynamics and neuroimaging and neurocognitive outcomes in long-term survivors of childhood acute lymphoblastic leukemia. J Clin Oncol 2016; 34 (22): 2644–2653. doi: 10.1200/JCO.2015.65.4574.

35. Moore IMK, Koerner KM, Gundy PM et al. Changes in oxidant defense, apoptosis, and cognitive abilities during treatment for childhood leukemia. Biol Res Nurs 2018; 20 (4): 393–402. doi: 10.1177/1099800418763124.

36. Partanen M, Phipps S, Russell K et al. Longitudinal trajectories of neurocognitive functioning in childhood acute lymphoblastic leukemia. J Pediatr Psychol 2021; 46 (2): 168–178. doi: 10.1093/jpepsy/jsaa086.

37. van der Plas E, Schachar RJ, Hitzler J et al. Brain structure, working memory and response inhibition in childhood leukemia survivors. Brain Behav 2017; 7 (2): e00621. doi: 10.1002/brb3.621.

38. van der Plas E, Erdman L, Nieman BJ et al. Characterizing neurocognitive late effects in childhood leukemia survivors using a combination of neuropsychological and cognitive neuroscience measures. Child Neuropsychol 2018; 24 (8): 999–1014. doi: 10.1080/ 09297049.2017.1386170.

39. van der Plas E, Noakes TLS, Butcher DT et al. Cognitive and behavioral risk factors for low quality of life in survivors of childhood acute lymphoblastic leukemia. Pediatr Res 2021; 90 (2): 419–426. doi: 10.1038/s41390-020-01230-7.

40. Watanabe S, Azami Y, Ozawa M et al. Intellectual development after treatment in children with acute leukemia and brain tumor: intelligence in children with cancer. Pediatr Int 2011; 53 (5): 694–700. doi: 10.1111/j.1442-200X.2011.03355.x.

41. Zając-Spychała O, Pawlak MA, Karmelita-Katulska K et al. Long-term brain structural magnetic resonance imaging and cognitive functioning in children treated for acute lymphoblastic leukemia with high-dose methotrexate chemotherapy alone or combined with CNS radiotherapy at reduced total dose to 12 Gy. Neuroradiology 2017; 59 (2): 147–156. doi: 10.1007/s00234-016-1777-8.

42. Lezak MD. Neuropsychological assessment. Oxford, New York: Oxford University Press 2012.

43. Harila MJ, Winqvist S, Lanning M et al. Progressive neurocognitive impairment in young adult survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2009; 53 (2): 156–161. doi: 10.1002/pbc.21992.

44. Lofstad GE, Reinfjell T, Hestad K et al. Cognitive outcome in children and adolescents treated for acute lymphoblastic leukaemia with chemotherapy only. Acta Paediatr 2009; 98 (1): 180–186. doi: 10.1111/j.1651-2227.2008.01055.x.

45. Diamond A. Executive functions. Handb Clin Neurol 2020; 173: 225–240. doi: 10.1016/B978-0-444-64150-2.00020-4.

46. Friso-van den Bos I, van de Weijer-Bergsma E. Classroom versus individual working memory assessment: predicting academic achievement and the role of attention and response inhibition. Memory 2020; 28 (1): 70–82. doi: 10.1080/09658211.2019.1682170.

47. Buizer AI, de Sonneville LMJ, van den Heuvel-Eibrink MM et al. Chemotherapy and attentional dysfunction in survivors of childhood acute lymphoblastic leukemia: effect of treatment intensity. Pediatr Blood Cancer 2005; 45 (3): 281–290. doi: 10.1002/pbc.20397.

48. Insel K, Hockenberry M, Harris L et al. Declines noted in cognitive processes and association with achievement among children with leukemia. Oncol Nurs Forum 2017; 44 (4): 503–511. doi: 10.1188/17.ONF.503-511.

49. Fuhrmann D, Knoll LJ, Blakemore S-J. Adolescence as a sensitive period of brain development. Trends Cogn Sci 2015; 19 (10): 558–566. doi: 10.1016/j.tics.2015.07.008.

Labels
Paediatric neurology Neurosurgery Neurology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#