#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Laboratory ef­ficacy test­­ing of acetylsalicylic acid treatment in secondary prevention of ischemic stroke


Authors: T. Adámek 1;  Z. Paluch 2;  L. Sadílková 1;  Š. Alušík 3
Authors‘ workplace: Interní oddělení, Thomayerova nemocnice, Praha 1;  Ústav farmakologie, 2. LF UK, Praha 2;  Katedra vnitřního lékařství, Institut postgraduálního vzdělávání ve zdravotnictví, Praha 3
Published in: Cesk Slov Neurol N 2019; 82(1): 84-90
Category: Original Paper

Overview

Aim:

To as­sess the ef­ficacy of antiplatelet ther­apy with acetylsalicylic acid (ASA) in secondary prevention in a strictly selected group of patients after ischemic stroke.

Patients and methods:

The group included 106 patients with a minimum of factors potential­ly af­fect­­ing the ef­fect of ASA. While compliance was verified by laboratory determination of ASA levels in plasma, presence of previous embolic events was minimized by thorough examination of the heart and carotid arteries. All patients tak­­ing 100 mg of ASA  daily had their serum 11-dehydrotromboxane B2 levels determined.

Results:

Even in this strictly selected set of patients, ef­fective thromboxane suppres­sion (95% and higher) was only achieved in 76 patients, with suppres­sion levels of 80– 94.9% determined in 24 patients, and lower in another six patients. Patients with inadequate thromboxane suppres­sion had statistical­ly higher body mass index, cholesterol and LDL cholesterol, and uric acid levels.

Conclusion:

While ASA use led to marked thromboxane suppres­sion in all patients, the required level of suppres­sion was not achieved in over a fourth of our patients. Consistent with latest reports, it is likely that the seemingly inadequate suppres­sion of thromboxane is due to its production from sources other than platelets.

Key words:

acetylsalicylic acid – ischemic stroke – 11-dehydrothromboxane

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manu­script met the ICMJE “uniform requirements” for biomedical papers.


乙酰水杨酸治疗缺血性脑卒中的实验室疗效试验

目的:

目的:评价乙酰水杨酸(ASA)抗血小板治疗在缺血性脑卒中后二级预防中的作用。

患者和方法:

本组纳入106例患者,其中影响ASA疗效的因素最少。虽然通过实验室测定血浆中ASA水平证实了依从性,但通过对心脏和颈动脉的彻底检查,以前的栓塞事件的存在被最小化。所有每天服用100毫克ASA的患者的血清中11-脱氢托姆波塞烷B2水平被测定。

结果:

即使在这组严格选择的患者中,有效的血栓素抑制(95%及以上)仅在76例患者中实现,其中24例患者的抑制水平为80 - 94.9%,另外6例患者的抑制水平较低。血栓素抑制不足的患者,其体重指数、胆固醇和低密度脂蛋白胆固醇以及尿酸水平均有统计学意义上的升高。

结论:

虽然ASA的使用导致所有患者血栓素明显抑制,但超过四分之一的患者没有达到所需的抑制水平。与最新的报道相一致,血栓素的抑制作用似乎并不充分,这可能是由于血栓素不是由血小板产生的。

关键词:

乙酰水杨酸-缺血性脑卒中- 11-脱氢血栓素

 


Sources

1. Oza R, Rundell K, Garcel­lano M. Recur­rent ischemic stroke: strategies for prevention. Am Fam Physician 2017; 96(7): 436– 440.
2. Rothwell PM, Algra A, Chen Z et al. Ef­fects of aspirin on risk and severity of early recur­rent stroke after transient ischaemic attack and ischaemic stroke:time-course analysis of randomised trials. Lancet 2016; 388(10042): 365– 375. doi: 10.1016/  S0140-6736(16)30468-8.
3. Kernan WN, Ovbiagele B, Black HR et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack. A guideline for healthcare profes­sionals from the American Heart As­sociation/ American Stroke As­sociation. Stroke 2014; 45(7): 2160– 2236. doi: 10.1161/ STR.0000000000000024.
4. Cattaneo M. The clinical relevance of response vari­-ability to antiplatelet ther­apy. Hematology Am Soc Hematol Educ Program 2011; 2011: 70– 75. doi: 10.1182/ asheducation-2011.1.70.
5. Com­mittee for Proprietary Medicinal Products. Position paper on the regulatory requirements for the authorization of low-dose modified release ASA formulations in the secondary prevention of cardiovascular events. [online] EMEA: London 2002. Available from URL: http:/ / www.ema.europa.eu/ docs/ en_GB/ document_library/ Scientific_guideline/ 2009/ 09/ WC500003340.pdf.
6. Kuliczkowski W, Witkowski A, Polonski L et al. Inter­individual variability in the response to oral antiplate­let drugs: a position paper of the Work­­ing Group on antiplatelet drugs resistance appointed by the Section of Cardiovascular Interventions of the Polish Cardiac Society, endorsed by the Work­­ing Group on Thrombosis of the European Society of Cardiology. Eur Heart J 2009; 30(4): 426– 435. doi: 10.1093/ eurheartj/ ehn562.
7. Santos MT, Moscardó A, Lator­re A et al. The time between venepuncture and blood incubation is critical for serum thromboxane B2 synthesis. Platelets 2017; 28(3): 310– 311. doi: 10.1080/ 09537104.2016.1246719.
8. Brun C, Daali Y, Combescure C et al. Aspirin response: dif­ferences in serum thromboxane B2 levels between clinical studies. Platelets 2016; 27(3): 196– 202. doi: 10.3109/ 09537104.2015.1072147.
9. van Diemen JJ, Fuijkschot WW, Spit K et al. Influence of pre-analytical time and temperature conditions on serum thromboxane B2 levels. Thromb Res 2018; 163: 1– 5. doi: 10.1016/ j.thromres.2018.01.010.
10. Paluch Z, Jedlicková V, Skibova J et al. The ef­fectiveness of antiplatelet treatment with aspirin in polymorbid patients. Int Angiol 2007; 26(3): 206– 212.
11. Cattaneo M. Letter by Cattaneo regard­­ing article“Incomplete inhibition of thromboxane bio­synthesis by acetylsalicylic acid: determinants and ef­fect on cardiovascular risk“. Circulation 2009; 119(24): e594. doi: 10.1161/ CIRCULATIONAHA.108.838888.
12. Adámek T, Paluch Z, Alušík Š. Úskalí měření tromboxanů v klinické praxi. Chem Listy. In press 2018.
13. Eikelboom JW, Hirsh J, Weitz JI et al. Aspirin-resis­tant thromboxane bio­synthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events. Circulation 2002; 105(14): 1650– 1655.
14. Sadilkova L, Paluch Z, Mottlova J et al. The purification is not crucial in EIA measurement of thromboxane B2 and 11-dehydrothromboxane B2 in human plasma. Clin Lab 2012; 58(1– 2): 177– 183.
15. Sadilkova L, Paluch Z, Mottlova et al. The ef­fect of selected pre-analytical phase variables on plasma thromboxane A2 measurements in humans. Int J Lab Hematol 2013; 35(1): 92– 100. doi: 10.1111/ j.1751-553X.2012.01458.x.
16. Alusik S, Jedlickova V, Paluch Z et al. Determination of plasma salicylic acid levels to as­sess compliance to acetylsalicylic acid ther­apy. Chem Listy 2010; 104: 803– 806.
17. Cheng X, Xie NC, Xu HL et al. Biochemical aspirin resistance is as­sociated with increased stroke severity and infarct volumes in ischemic stroke patients. Oncotarget 2017; 8(44): 77086– 77095. doi: 10.18632/ oncotarget.20356.
18. Zhang N, Wang Z, Zhou L. Aspirin resistance are as­sociated with long-term recur­rent stroke events after ischaemic stroke. Brain Res Bull 2017; 134: 205– 210. doi: 10.1016/ j.brainresbul­l.2017.08.012.
19. Patrono C, Ciabattoni G, Pinca E et al. Low dose of aspirin and inhibition of thromboxane B2 production in healthy subjects. Thromb Res 1980; 17(3– 4): 317– 327.
20. Eikelboom JW, Hankey GJ, Thom J et al. Incomplete inhibition of thromboxane bio­synthesis by acetylsal­i­cylic acid: determinants and ef­fect on cardiovascular risk. Circulation 2008; 118(17): 1705– 1712. doi: 10.1161/ CIRCULATIONAHA.108.768283.
21. Lopez RL, Guyer KE, Tor­re IG et al. Platelet thromboxane (11-dehydro-Thromboxane B2) and aspirin response in patients with diabetes and coronary artery dis­ease. World J Diabetes 2014; 5(2): 115– 127. doi: 10.4239/ wjd.v5.i2.115.
22. Rocca B, Dragani A, Pagliaccia F. Identify­­ing determinants of variability to tailor aspiirin ther­apy. Expert Rev Cardiovasc Ther 2013; 11(3): 365– 379. doi: 10.1586/ erc.12.144.
23. Kooten F, Ciabattoni G, Koudstaal PJ et al. Increased platelet activation in the chronic phase after cerebral ischemia and intracerebral hemor­rhage. Stroke 1999; 30(3): 546– 549.
24. Smith JP, Haddad EV, Taylor MB et al. Suboptimal inhibition of platelet cyclooxygenase-1 by aspirin in metabolic syndrome. Hypertension 2012; 59(3): 719– 725. doi: 10.1161/ HYPERTENSIONAHA.111.181404.
25. Chen W, Pan Y, J­­ing J et al. Recur­rent stroke in minor ischemic stroke or transient ischemic attack with metabolic syndrome and/ or diabetes mel­litus. J Am Heart As­soc 2017; 6(6): pii: e005446. doi: 10.1161/ JAHA.116.005446. 
26. Kwok C, Shoamanesh A, Copley H et al. Ef­ficacy of antiplatelet ther­apy in secondary prevention fol­low­­ing lacunar stroke: pooled analysis of randomized trials. Stroke 2015; 46(4): 1014– 1023. doi: 10.1161/ STROKEAHA.114.008422.
27. Santil­li F, Lapen­na D, La Barbara S et al. Oxidative stres­s-related mechanisms af­fect­­ing response to aspirin in diabetes mel­litus. Free Radic Biol Med 2015; 80: 101– 110. doi: 10.1016/ j.freeradbio­med.2014.12.010.
28. Hu L, Chang L, Zhang Y et al. Platelets express activated P2Y12 receptor in patients with diabetes mel­litus. Circulation 2017; 136(9): 817– 833. doi: 10.1161/ CIRCULATIONAHA.116.026995.
29. Capuano V, Marchese F, Capuano R et al. Hyperuricemia as an independent risk factor for major cardiovascular events:a 10-year cohort study from Southern Italy. J Cardiovasc Med (Hagerstown) 2017; 18(3): 159– 164. doi: 10.2459/ JCM.0000000000000347.
30. Li M, Hou W, Zhang X et al. Hyperuricemia and risk of stroke: a systematic review and meta-analysis of prospective studies. Atherosclerosis 2014; 232(2): 265– 270. doi: 10.1016/ j.atherosclerosis.2013.11.051.
31. Guo L. Interpretation of the Chinese expert consensus: recom­mendations for dia­gnosis and treatment of asymp­tomatic hyperuricemia complicated with cardiovascular dis­eases. J Transl Intern Med 2014; 2(2): 93– 96.
32. Larsen KS, Pottegard A, Lindegaard HM et al. Ef­fect of al­lopurinol on cardiovascular outcomes in hyperuricemic patients: a cohort study. Am J Med 2016; 129(3): 299– 306. doi: 10.1016/ j.amjmed.2015.11.003.
33. Blinden K, Singla A, Gesheff M et al. Statin ther­apy and thromboxane generation in patients with coronary artery dis­ease treated with high-dose aspirin. Thromb Hae­most 2014; 112(2): 323– 331. doi: 10.1160/ TH14-01-0094.
34. Würtz M, Grove EL, Kristensen SD et al. The antiplatelet ef­fect of aspirin is reduced by proton pump inhibitors in patients with coronary artery dis­ease. Heart 2010; 96(5): 368– 371. doi: 10.1136/ hrt.2009.181107.
35. Brune K, Patrignani P. New insights into the use of cur­rently available non-steroidal anti-inflam­matory drugs. J Pain Res 2015; 8: 105– 118. doi: 10.2147/ JPR.S75160.
36. Gurbel PA, Bliden KP, DiChiara J et al. Evaluation of dose- related ef­fects of aspirin on platelet function. Results from the Aspirin-Induced Platelet Ef­fect (ASPECT) study. Circulation 2007; 115(25): 3156– 3164. doi: 10.1161/ CIRCULATIONAHA.106.675587.
37. Kakorous N, Gluckman T, Conte JV et al. Dif­ferential impact of serial measurement of nonplatelet thromboxane generation on long-term outcome after cardiac surgery. J Am Heart As­soc 2017; 6(11): e007486. doi: 10.1161/ JAHA.117.007486.
38. Dzeshka MS, Shantsila A, Lip GY. Ef­fects of aspirin on endothelial function and hypertension. Curr Hypertens Rep 2016; 18(11): 83. doi: 10.1007/ s11906-016-0688-8.
39. Wang Y, Wang Y, Zhao X et al. CHANCE Investigators. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N Engl J Med 2013; 369(1): 11– 19. doi: 10.1056/ NEJMoa1215340.
40. Johnston SC, Easton JD, Far­rant M et al. On behalf of the POINT Investigators. Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA. N Engl J Med 2018; 379(3): 215– 225. doi: 10.1056/ NEJMoa1800410.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 1

2019 Issue 1

Most read in this issue
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#