Using Transcranial Sonography to Display Intracranial Structures in the B-mode
Authors:
D. Školoudík
Authors‘ workplace:
Neurologická klinika 1. LF UK a VFN v Praze
; Centrum vědy a výzkumu, Fakulta zdravotnických věd UP v Olomouci
Published in:
Cesk Slov Neurol N 2017; 80/113(1): 8-23
Category:
Minimonography
doi:
https://doi.org/10.14735/amcsnn20178
Overview
Transcranial sonography (TCS) enables displaying of intracranial structures in the B-mode. Recently, TCS has been established mostly as a tool for the diagnosis and monitoring of degenerative brain disorders, less frequently also for the diagnosis and monitoring of other intracranial pathologic processes. Transtemporal and transfrontal approaches are most frequently used to display the intracranial structures. Technological advances enabled standardization of the TCS and definition of the standard imaging planes. These standard imaging planes enable evaluation of echogenicity and the size of the different intracranial structures, such as substantia nigra, midbrain raphe, thalamus, caudate nucleus, lentiform nucleus, insular cortex, cerebral or cerebellar white matter, dentate nucleus, hippocampus and ventricular system. Pathological findings of increased or decreased echogenicity, the width or the area of the individual intracranial structures can be found not only in various degenerative brain disorders, where the TCS plays the role in the diagnosis and differential diagnosis, but also in patients with cerebrovascular diseases, hydrocephalus or intracranial hypertension. The review brings information about usefulness of the TCS in patients with neurological and psychiatric diseases.
Key words:
ultrasound – transcranial sonography–neurosonology – neurodegenerative diseases
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Sources
1. Berg D, Godau J, Walter U. Transcranial sonography in movement disorders. Lancet Neurol 2008;7(11):1044– 55. doi: 10.1016/ S1474-4422(08)70239-4.
2. Školoudík D, Škoda O, Bar M, et al. Neurosonologie. Praha: Grada 2003.
3. Walter U, Školoudík D. Transcranial sonography (TCS) of brain parenchyma in movement disorders: quality standards, diagnostic applications and novel technologies. Ultraschall Med 2014;35(4):322– 31. doi: 10.1055/ s-0033-1356415.
4. Go CL, Frenzel A, Rosales RL, et al. Assessment of substantia nigra echogenicity in German and Filipino populations using a portable ultrasound system. J Ultrasound Med 2012;31(2):191– 6.
5. Walter U, Kanowski M, Kaufmann J, et al. Contemporary ultrasound systems allow high-resolution transcranial imaging of small echogenic deep intracranial structures similarly as MRI: a phantom study. Neuroimage 2008;40(2):551– 8. doi: 10.1016/ j.neuroimage.2007.12.019.
6. Walter U, Behnke S, Eyding J, et al. Transcranial brain parenchyma sonography in movement disorders: state of the art. Ultrasound Med Biol 2007;33(1):15– 25. doi: 10.1016/ j.ultrasmedbio.2006.07.021.
7. Forzoni L, D‘Onofrio S, De Beni S, et al. Virtual Na-vigator Registration Procedure for Transcranial Applic-ation. In: Hellmich C, Hamza MH, Simsik D, eds. Proceed-ings of the IASTED International Conference Biomedical Engineering (BioMed 2012). Innsbruck: International Association of Science and Technology for Development (IASTED) 2012:496– 503.
8. Skoloudik D, Walter U. Method and validity of transcranial sonography in movement disorders. Int Rev Neurobiol 2010;90:7– 34. doi: 10.1016/ S0074-7742(10)90002-0.
9. Skoloudik D, Fadrna T, Bartova P, et al. Reproducibility of sonographic measurement of the substantia nigra. Ultrasound Med Biol 2007;33(9):1347– 52.
10. van de Loo S, Walter U, Behnke S, et al. Reproducibility and diagnostic accuracy of substantia nigra sonography for the diagnosis of Parkinson‘s disease. J Neurol Neurosurg Psychiatry 2010;81(10):1087– 92. doi: 10.1136/ jnnp.2009.196352.
11. Walter U. How to measure substantia nigra hyperechogenicity in Parkinson’s disease: detailed guide with video. J Ultrasound Med 2013;32(10):1837– 43. doi: 10.7863/ ultra.32.10.1837.
12. Skoloudik D, Jelinkova M, Blahuta J, et al. Transcranial sonography of the substantia nigra: digital image analysis. AJNR Am J Neuroradiol 2014;35(12):2273– 8. doi: 10.3174/ ajnr.A4049.
13. Walter U. Transcranial sonography in brain disorders with trace metal accumulation. Int Rev Neurobiol 2010;90:166– 78. doi: 10.1016/ S0074-7742(10)90012-3.
14. Berg D, Godau J, Riederer P, et al. Microglia activation is related to substantia nigra echogenicity. J Neural Transm 2010;117(11):1287– 92. doi: 10.1007/ s00702-010-0504-6.
15. Berg D, Becker G, Zeiler B, et al. Vulnerability of the nigrostriatal system as detected by transcranial ultrasound. Neurology 1999;53(5):1026– 31.
16. Mehnert S, Reuter I, Schepp K, et al. Transcranial sonography for diagnosis of Parkinson‘s disease. BMC Neurol 2010;10:9. doi: 10.1186/ 1471-2377-10-9.
17. Hagenah J, König IR, Sperner J, et al. Life-long increase of substantia nigra hyperechogenicity in transcranial sonography. Neuroimage 2010;51(1):28– 32. doi: 10.1016/ j.neuroimage.2010.01.
18. Behnke S, Double KL, Duma S, et al. Substantia nigra echomorphology in the healthy very old: correlation with motor slowing. Neuroimage 2007;34(3):1054– 9.
19. Becker G, Becker T, Struck M, et al. Reduced echogenicity of brainstem raphe specific to unipolar depression: a transcranial color-coded real-time sonography study. Biol Psychiatry 1995;38(3):180– 4.
20. Silhan P, Jelinkova M, Walter U, et al. Transcranial sonography of brainstem structures in panic disorder. Psychiatry Res 2015;234(1):137– 43. doi: 10.1016/ j.pscychresns.2015.09.010.
21. Postert T, Eyding J, Berg D, et al. Transcranial sonography in spinocerebellar ataxia type 3. J Neural Transm Suppl 2004;68:123– 33.
22. Walter U, Kirsch M, Wittstock M, et al. Transcranial sonographic localization of deep brain stimulation electrodes is safe, reliable and predicts clinical outcome. Ultrasound Med Biol 2011;37(9):1382– 91. doi: 10.1016/ j.ultrasmedbio.2011.05.017.
23. Skoloudik D, Bartova P, Maskova J, et al. Transcranial Sonography of the Insula: Digitized Image Analysis of Fusion Images with Magnetic Resonance. Ultraschall Med 2016 Aug 3. [Epub ahead of print].
24. Skoloudik D, Walter U. Sonographic brain atlas. 2nd ed. Praha: Rekesh Comp Ltd 2014.
25. Yilmaz R, Pilotto A, Roeben B, et al. Structural Ultrasound of the Medial Temporal Lobe in Alzheimer‘s Disease. Ultraschall Med 2016, Jun 7. [Epub ahead of print].
26. Becker G, Seufert J, Bogdahn U, et al. Degeneration of substantia nigra in chronic Parkinson‘s disease visualized by transcranial color-coded real-time sonography. Neurology 1995;45(1):182– 4.
27. Berg D, Becker G, Zeiler B, et al. Vulnerability of the nigrostriatal system as detected by transcranial ultrasound. Neurology 1999;53(5):1026– 31.
28. Li DH, He YC, Liu J, et al. Diagnostic Accuracy of Transcranial Sonography of the Substantia Nigra in Parkinson‘s Disease: a Systematic Review and Meta-analysis. Sci Rep 2016;6:20863. doi: 10.1038/ srep20863.
29. Berg D, Behnke S, Seppi K, et al. Enlarged hyperechogenic substantia nigra as a risk marker for Par-kinson‘s disease. Mov Disord 2013;28(2):216– 9. doi: 10.1002/ mds.25192.
30. Stockner H, Sojer M, K KS, et al. Midbrain sonography in patients with essential tremor. Mov Disord 2007;22(3):414– 7.
31. Doepp F, Plotkin M, Siegel L, et al. Brain parenchyma sonography and 123I-FP-CIT SPECT in Parkinson‘s disease and essential tremor. Mov Disord 2008;23(3):405– 10.
32. Berardelli A, Wenning GK, Antonini A, et al. EFNS/ MDS-ES/ ENS recommendations for the diagnosis of Parkinson‘s disease. Eur J Neurol 2013;20(1):16– 34. doi: 10.1111/ ene.12022.
33. Schmidauer C, Sojer M, Seppi K, et al. Transcranial ultrasound shows nigral hypoechogenicity in restless legs syndrome. Ann Neurol 2005;58(4):630– 4.
34. Godau J, Schweitzer KJ, Liepelt I, et al. Substantia nigra hypoechogenicity: definition and findings in restless legs syndrome. Mov Disord 2007;22(2):187– 92.
35. Walter U, Hoeppner J, Prudente-Morrissey L, et al. Parkinson‘s disease-like midbrain sonography abnormalities are frequent in depressive disorders. Brain 2007;130(7):1799– 807.
36. Berg D, Supprian T, Hofmann E, et al. Depression in Parkinson‘s disease: brainstem midline alteration on transcranial sonography and magnetic resonance imaging. J Neurol 1999;246(12):1186– 93.
37. Hamerla G, Kropp P, Meyer B, et al. Midbrain raphe hypoechogenicity in migraineurs: an indicator for the use of analgesics but not triptans. Cephalalgia 2016, Aug 17. pii: 0333102416665225. [Epub ahead of print].
38. Synofzik M, Godau J, Lindig T, et al. Transcranial sonography reveals cerebellar, nigral, and forebrain abnormalities in Friedreich‘s ataxia. Neurodegener Dis 2011;8(6):470– 5.
39. Walter U, Dressler D, Probst T, et al. Transcranial brain sonography findings in discriminating between parkinsonism and idiopathic Parkinson’s disease. Arch Neurol 2007;64(11):1635– 40.
40. Wollenweber FA, Schomburg R, Probst M, et al. Width of the third ventricle assessed by transcranial sonography can monitor brain atrophy in a time- and cost-effective manner – results from a longitudinal study on 500 subjects. Psychiatry Res 2011;191(3):212– 6.
41. Walter U, Blitzer A, Benecke R, et al. Sonographic detection of basal ganglia abnormalities in spasmodic dysphonia. Eur J Neurol 2014;21(2):349– 52. doi: 10.1111/ ene.12151.
42. Naumann M, Becker G, Toyka KV, et al. Lenticular nucleus lesion in idiopathic dystonia detected by transcranial sonography. Neurology 1996;47(5):1284– 90.
43. Postert T, Lack B, Kuhn W, et al. Basal ganglia alterations and brain atrophy in Huntington‘s disease depicted by transcranial real time sonography. J Neurol Neurosurg Psychiatry 1999;67(4):457– 62.
44. Brüggemann N, Schneider SA, Sander T, et al. Distinct basal ganglia hyperechogenicity in idiopathic basal ganglia calcification. Mov Disord 2010;25(15):2661– 4. doi: 10.1002/ mds.23264.
45. Škoda O, Herzig R, Mikulík R, et al. Klinický standard pro diagnostiku a léčbu pacientů s ischemickou cévní mozkovou příhodou a s tranzitorní ischemickou atakou – verze 2016. Cesk Slov Neurol N 2016;79/ 112(3):351– 63. doi: 10.14735/ amcsnn2016351.
46. Seidel G, Kaps M, Gerriets T, et al. Evaluation of the ventricular system in adults by transcranial duplex sonography. J Neuroimaging 1995;5(2):105– 8.
47. Woydt M, Greiner K, Perez J, et al. Transcranial duplex-sonography in intracranial hemorrhage. Evaluation of transcranial duplex-sonography in the diagnosis of spontaneous and traumatic intracranial hemorrhage. Zentralbl Neurochir 1996;57(3):129– 35.
48. Tomek A, Školoudík D, Škoda O, et al. Metodika stanovení smrti mozku pomocí transkraniální sonografie vypracovaná Neurosonologickou komisí a Cerebrovaskulární sekcí České neurologické společnosti ČLS JEP. Cesk Slov Neurol N 2016;79/ 112(5):608– 11.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2017 Issue 1
Most read in this issue
- Essential Neurological Examination – Time for Change?
- Current Perception of Contraindications and Complications of Nerve Conduction Studies and Needle Electromyography
- Extirpation of Colloid Cyst by an Endoscopic Approach
- Periodic Limb Movements During Sleep are More Severe in Narcolepsy with Cataplexy than in Narcolepsy without Cataplexy