#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genetická diagnostika familiárních onemocnění krvetvorby


Authors: Z. Vrzalová 1,2;  ;  L. Radová 2,3;  K. Staňo Kozubík 1,2;  J. Štika 2,3;  J.- Trizuljak 1 3;  Š.- Pospíšilová 1 3;  M.- Doubek 1 3
Authors‘ workplace: Centrum molekulární biologie a genetiky, Interní hematologická a onkologická klinika LF MU a FN Brno 1;  Středoevropský technologický institut (CEITEC), MU Brno 2;  Ústav lékařské genetiky a genomiky, LF MU Brno 3
Published in: Klin Onkol 2023; 36(Supplementum 1): 131-136
Category: Article
doi: https://doi.org/10.48095/ccko2023S131

Overview

Východiska: Familiární onemocnění krvetvorby (familial hematopoietic disorders – FHD) jsou vzácnou a heterogenní skupinou onemocnění, do které se řadí dědičné anemie, dědičné trombocytopenie, vrozené neutropenie a vrozené syndromy selhání kostní dřeně. Pro FHD je charakteristická variabilní klinická expresivita a neúplná penetrance fenotypu i v rámci jedné rodiny, což znesnadňuje určení správné anamnézy. Molekulární genetické defekty FHD se nachází ve > 300 genech zodpovědných zejména za buněčné procesy, jejichž funkční poruchy vedou k symptomatické cytopenii, dysfunkci orgánů, poškození tkání a k rozvoji syndromů. Některé varianty genů predisponují ke vzniku závažných hematologických malignit či vzácněji solidních nádorů. Na našem pracovišti jsme zavedli genetickou analýzu u rodin s podezřením na dědičné hematologické onemocnění. Naše zaměření je v rámci ČR unikátní.

Soubor pacientů a metody: Od roku 2017 se věnujeme výzkumu a diagnostice vzácných nemocí FHD. Celkem jsme zanalyzovali 92 rodin s podezřením na FHD pomocí moderních genomických přístupů jako je celoexomové sekvenování, predikční analýza in silico, metoda MLPA a Sangerovo sekvenování. Výsledky: U 70 rodin jsme detekovali již známou patogenní / pravděpodobně patogenní variantu nebo novou variantu nejasného klinického významu (variant of unclear clinical significance – VUS), jejichž záchyt vedl k potvrzení nebo upřesnění diagnózy. Pozitivní nálezy poukázaly na výskyt dědičných trombocytopenií (geny TUBB1, ETV6 a ANKRD26 – riziko rozvoje hematologických malignit), Glanzmannových trombastenií (ITGA2B), anemií, talasemií, ale také na výskyt vzácných syndromových onemocnění, v ČR např. Bernard-Soulier (GP1BA); Heřmanský-Pudlák (HPS1); Wiskott-Aldrich (WAS – zvýšené riziko výskytu malignit); Shwachman-Diamondův syndrom (SBDS – 30% riziko myeloidních malignit) a Sebastianův syndrom (MYH9) apod.

Závěr: Genetická diagnostika se stala součástí standardního vyšetření pacientů s dědičným hematologickým onemocněním. Zároveň pomohla objasnit mnohé nevyřešené případy a poukázala na výskyt vzácných variant klasifikovaných jako VUS, u nichž je nutné prokázat jejich funkční dopad pomocí proteomických technologií. Potvrzení diagnózy pacienta má také kladný dopad na jeho individualizovanou péči a ke stanovení rizika vzniku malignit či jiných přídavných onemocnění.

Klíčová slova:

genetická analýza – familiární onemocnění krvetvorby – vzácné varianty

Úvod

Familiární poruchy krvetvorby (familial hematopoietic disorders – FHD) se řadí mezi vzácná a heterogenní onemocnění, pro které je charakteristická variabilní klinická expresivita a neúplná penetrance fenotypu i v rámci jedné rodiny. Stanovení přesné klinické anamnézy na základě standardních vyšetřovacích postupů je velmi obtížné a často dochází k určení nesprávné diagnózy. Ke komplexnímu vyšetření včetně molekulárně genetické analýzy se většinou přistupuje až s rozvojem závažnějších příznaků (např. symptomatická cytopenie, orgánová dysfunkce nebo rozvoj hematologické neoplazie) v pozdějším věku [1]. Molekulární genetické defekty FHD zasahují do genů odpovědných za buněčné procesy, jako je buněčný růst, aktivace kontrolního bodu buněčného cyklu, biogeneze ribozomů, udržování telomer, homologní rekombinace a procesy opravy DNA [2,3]. Nejčastější skupinou FHD jsou hereditární anemie (HA) charakterizované anemií různého stupně a nekorelací genotypu s fenotypem. HA jsou způsobeny variantami ve > 70 genech, které řídí tvorbu a strukturu erytrocytů (red blood cells – RBC) a ovlivňují hladiny hemoglobinu (talasemie), diferenciaci a proliferaci RBC (hyporegenerativní anemie), strukturu buněčné membrány (defekty erytrocytární membrány) a aktivitu erytrocytárních enzymů (hemolytické anemie) [4]. Další heterogenní skupinou FHD jsou dědičné trombocytopenie (inherited thrombocytopenias – IT) projevující se variabilní expresivitou sklonu ke krvácení u jednotlivých pacientů [5]. Dosud je známo > 40 genů spojených s IT. Některé z nich predisponují k rozvoji hematologických malignit. Patogenní varianty genů jsou často jedinečné, rodinně specifické a vedou k poruchám produkce krevních destiček nebo k jejich strukturálním a funkčním defektům [6]. Pro vrozené neutropenie (congenital neutropenias – CN) je typická porucha vyzrávání neutrofilních granulocytů. Pacienti s těžkou vrozenou neutropenií jsou již od narození náchylní k opakovaným život ohrožujícím infekcím. Součástí klinického obrazu bývá také cytopenie. Genetické defekty se vyskytují ve > 24 genech a nejčastěji zasahují geny ELANE, HAX1 a SBDS [7]. Diagnóza CN představuje pro pacienty 10–60% riziko vzniku hematologické malignity jako leukemie, lymfomu a myelodysplastického syndromu (MDS) a také predisponuje k rozvoji dalších orgánových dysfunkcí [8]. Dědičné cytopenie a vrozené syndromy selhání kostní dřeně (inherited bone marrow failure syndromes – IBMFS) se významně překrývají. IBMFS jsou charakterizovány poruchou funkce kostní dřeně (asi 30 % případů přechází do hematopoetické aplazie) a nádorovou predispozicí buď k leukemii, nebo k některým solidním nádorům v 5–50 % případů. V posledních letech bylo identifikováno > 60 genů souvisejících s IBMFS. Nejčastěji uváděnými IBMFS jsou Fanconiho (geny řady FANC-) a Diamond-Blackfanova anemie (RPS- a RPL- geny), Shwachman-Diamondův syndrom (SBDS) a Dyskeratosis congenita (TER- geny, DKC1). U několika IBMFS je také zvýšené riziko vzniku solidních malignit, např. nádorů hlavy a krku, spinocelulárních karcinomů anogenitální oblasti nebo sarkomů měkkých tkání [1].

Cílem našeho projektu bylo využít moderní genomické přístupy pro vyhledávání zárodečných variant u postižených rodin s hematologickým onemocněním. K tomuto účelu bylo využito celoexomového sekvenování (whole exome sequencing – WES), Sangerova sekvenování a metody MLPA (Multiplex Ligation-dependent Probe Amplification). Použité diagnostické metody u jednotlivých pacientů se odvíjely od hereditární etiologie jejich onemocnění. Pokud byla zjištěna varianta predisponující k malignímu onemocnění, stanovili jsme riziko progrese spojené s touto variantou a pomocí molekulárně-genetických a cytogenetických metod hledali další patogenní varianty.

Obr. 1. Základní schéma diagnostického přístupu u našeho souboru pacientů.
Obr. 1. Základní schéma diagnostického přístupu u našeho souboru pacientů.
8CNV – změna počtu kopií, VUS – varianta nejasného klinického významu

Soubor pacientů a metody

V období 2017–2022 byla provedena genetická analýza u 92 nepříbuzných rodin (celkem 175 vzorků od pacientů a jejich rodinných příslušníků) s podezřením na dědičné hematologické a onkologické onemocnění. Všichni pacienti zařazení do projektu byli indikováni z ambulance klinického genetika ve Fakultní nemocnici Brno (FN Brno), kde současně podepsali informovaný souhlas s genetickým vyšetřením. Na našem pracovišti byla z periferní krve (v případě malignit i z bukálního stěru) pacientů izolována DNA použitím MagCore Genomic DNA Whole Blood Kit (RBC Bioscience). Biologický materiál všech vzorků byl následně uschován v biobance CEITEC. Metodický přístup se odvíjel u každé rodiny v závilosti na suspektní diagnóze pacienta, vzhledem k předpokládanému počtu kauzálných genů, typu dědičnosti a velikosti souboru analyzovaných vzorků. Základní schéma diagnostického přístupu v našem projektu je znázorněno ve schématu 1. Nicméně vzhledem k heterogenitě fenotypu FHD a širokému spektru defektních genů u většiny diagnóz byla využita analýza WES. Metodický přístup WES zahrnoval přípravu sekvenační knihovny podle protokolu KAPA HyperCap Workflow (dle aktuální verze firmy Roche) a vlastní sekvenování probíhalo na platformě NextSeq 550 (Illumina). Surová WES data byla mapována na lidský referenční genom Hg38 (GRCh38) pomocí algoritmu BWA-mem a PCR duplikáty byly identifikovány a odstraněny programem MarkDuplicates (Picard). K detekci a anotaci variant sloužil GATK HaplotypeCaller a Annovar. Odfiltrovány byly synonymní varianty, varianty v intronové oblasti a varianty s pokrytím menším než 15 čtení. Rovněž bylo využito cílených virtuálních panelů genů odpovídajících příslušnému fenotypu a následné haplotypizační analýzy v rámci jedné rodiny, kdy byl porovnáván výskyt variant u postižených a zdravých jedinců. Pro identifikaci potenciálně klinicky relevantních jednonukleotidových variant a krátkých inzercí a delecí (SNV/indelů) byla využita frekvence výskytu v populačních databázích (1000 genomes, gnomAD, ExAC) pod 1 %. Pravděpodobná patogenita variant byla určena pomocí predikčních programů (Align GVGD, PROVEAN, Mutation Taster, SIFT atd.), z výsledků softwaru AlamutTM Visual Plus, databáze HGMD [9], případně pomocí krystalografické analýzy programu STRIDE. Následně byly identifikované SNV/indely klasifikovány do skupin klinické významnosti podle mezinárodních standardů (ACMG/AMP guidelines) [10]. Přítomnost germinálních variant segregujících s daným fenotypem byla potvrzena pomocí Sangerova sekvenování, které zároveň sloužilo k cílenému ověření variant u dalších rodinných příslušníků. Současně Sangerovo sekvenování bylo metodou první volby pro detekci SNV/indelů v genech s menším počtem exonů např. u diagnostiky talasemie a hereditární hemoragické teleangiektázie (HHT). U obou onemocnění bylo nutné detekovat změny v počtu kopií (copy number variation – CNV), které se vyskytují až v 50 % případů. K tomuto účelu byla vybrána metoda MLPA s využitím chemie a sond P140 HBA, P102 HBB a P093 HTT/HPAH (MRC Holland), připravené PCR produkty byly analyzovány na genetickém analyzátoru ABI 3500 (ThermoFisher Scientific) a surová data byla zpracována pomocí analytického softwaru Coffalyser.net (MRC Holland).

Výsledky

V našem souboru vzorků byla provedena genetická analýza u 92 rodin, tzn. u pacientů se suspektním fenotypem FHD a u jejich rodinných příslušníků (celkem 175 vzorků). Vyšetřovaná kohorta byla analyzována přístupem WES, Sangerovým sekvenováním nebo metodou MLPA, v závislosti na hereditární etiologii vyšetřovaných rodin. U 70 rodin tzn. v 76 % případů byly úspěšně identifikovány potenciálně kauzální varianty typu SNV/indely nebo CNV segregující s fenotypem a stanovena/upřesněna diagnóza postižených členů rodiny. Nejčastěji se jednalo o detekci vzácných, rodinně-specifických variant klasifikovaných jako patogenní, pravděpodobně patogenní nebo dosud nepopsané varianty nejasného klinického významu – VUS. Přehled významných identifikovaných genetických variant segregujících s fenotypem FHD v naší vyšetřované kohortě pacientů je uveden v tab. 1.

V naší kohortě pacientů přestavovaly největší skupinu rodiny s fenotypem dědičné trombocytopenie, která je molekulárně geneticky velmi heterogenní a kde kauzální varianta v některém z genů může predisponovat k nádorovým onemocněním. Příkladem jsou pozitivní nálezy germinálních variant ve vysoce penetrantních genech RUNX1 a ETV6, jejichž přítomnost byla posléze ověřena i v nádorovém vzorku pacientů. V rámci prvního případu s výskytem germinální dominantně negativní varianty c.866delG v RUNX1 u 7 členů rodiny, byl u všech jedinců zaznamenán snížený počet trombocytů (40–111 × 109/l) korelující s diagnózou IT, ovšem bez krvácivých stavů. Detekce varianty RUNX1 vedla k rozvoji MDS u jednoho člena rodiny, který následně progredoval do akutní myeloidní leukemie (AML), což vedlo po chemoterapeutické léčbě k následné sepsi organizmu ve 45 letech [11]. V nádorovém vzorku pacienta byly charakterizovány sekundární zásahy (varianty v genech PHF6, BCORL1 a BCOR), které velmi pravděpodobně vedly k rozvoji MDS a k progresi. U 6 členů další rodiny s fenotypem IT a počtem trombocytů (73–93 × 109/l) byla charakterizovaná nová, dosud nepopsaná varianta c.1138T>A v genu ETV6. Nicméně u jednoho člena této rodiny propukla akutní lymfoblastická leukemie (ALL) ve věku 15 let a u druhého jedince myeloproliferativní neoplazie (MPN) ve věku 35 let. Byly nalezeny sekundární zásahy v podobě: 1) stavu vysoké hyperdiploidie společně s exonovou delecí v IKZF1 genu u pacienta s rozvojem ALL; 2) somatické varianty v genu JAK2 pravděpodobně zodpovědné za rozvoj MPN. Následně se naše pracovní skupina zaměřila na provedení funkční analýzy vzácné varianty ETV6, kdy se úspěšně podařilo prokázat inaktivitu mutovaného proteinu [12]. U probandky s familiární esenciální trombocytemií byly detekovány zárodečné varianty v genech TRPM7 (c.223A>G) a ANKRD26 (c.-140C>G) a při rozvoji MPN byla detekována somatická varianta v genu JAK2. V další rodině jsme u probandky detekovali variantu c.3076C>T v genu ITGA2B, která je asociovaná s hereditární erytrocytózou s atypickými megakaryocyty a dále variantu v genu JAK2 predisponující k rozvoji hematologických malignit. Následovalo prediktivní testování obou variant u všech 8 rodinných příslušníků, jelikož se v rodinné historii, kromě hematomů a epistaxí, vyskytovaly opakovaně také myeloidní malignity a rakovina žaludku. V případě autozomálně recesivně (AR) podmíněné Glanzmannovy trombastenie byly detekovány dvě varianty (c.2965G>A; c.2944G>A) v genu ITGA2B. V dalších rodinách s diagnózou IT byly nalezeny germinální varianty ve známých genech jako jsou např. VWF, THPO, CYCS, MAP3K9 atd. Klinicky odlišná kazuistika se týkala probanda a jeho matky s fenotypem IT, nicméně u obou jedinců došlo k rozvoji těžké formy plicní fibrózy. Celkem u pěti členů rodiny včetně probanda a matky byla detekována dosud nepopsaná, raritní varianta c.532G>A v genu SFTPA1, která byla velmi pravděpodobně zodpovědná za projev intersticiální plicní fibrózy a úmrtí matky i probanda ve středním věku [13].

Dále jsme se u diagnózy IT zaměřili na screening promotorové oblasti genu ANKRD26, kde jsou popsané varianty predisponující ke vzniku IT 2. typu a k rozvoji hematologických malignit v 8–10 % případů [14]. Celkem jsme analyzovali 5’-nepřekládanou oblast genu ANKRD26 u 35 rodin se suspektním fenotypem IT, tzn. 75 vzorků od postižených jedinců a jejich zdravých příbuzných. Výsledkem byla detekce vzácné patogenní varianty c.-118C>T u tří postižených členů v rodině, kdy nález c.-118C>T varianty segregoval s fenotypem nízkého počtu trombocytů (25–35 × 109/l). Dále zajímavým vědeckým zjištěním pro nás byla stanovená hodnota frekvence (6,5 %) známé patogenní varianty c.-140C>G. Tato varianta se vyskytovala nejen u pacientů s IT ale ještě častěji u zdravých příbuzných. Vzhledem k nově aktualizované frekvenci varianty v databázi dbSNP (6,2 % u nefinské evropské populace) se nabízí otázka, zda se jedná o patogenní variantu, nebo o populační polymorfizmus. Toto téma je předmětem našeho dalšího výzkumu.

Nalezení kauzální varianty se často nezdařilo v případech rodin s diagnózou vrozené neutropenie, hereditární polyglobulie a HHT. Nicméně několik případů ve vyšetřované kohortě se podařilo objasnit. Výskyt vrozené neutropenie u dvou sourozenců byl vysvětlen nálezem dvou variant (c.536C>T; c.355T>C) v genu SBDS, který je příčinou Shwachman-Bodian-Diamondova syndromu. Přítomnost variant byla následně potvrzena segregační analýzou. Oba pacienti od 10 let věku trpěli na rekurentní infekce (počet neutrofilních granulocytů: 0,16–0,40 × 109/l) a chronickou gingivitidu. K upřesnění diagnózy pomocí genetické diagnostiky došlo až v dospělém věku sourozenců, nicméně současně přispělo k pravidelnému hematologickému sledování kvůli 30% riziku rozvoje MDS/AML. U rodiny s výskytem leukocytopenie jsme u dvou postižených členů rodiny detekovali vzácnou heterozygotní variantu c.2974A>C v genu VPS8. Diagnóza HHT byla potvrzena v případě dvou sourozenců detekcí heterozygotní varianty c.1120C>T v genu ACVRL1.

Molekulárně genetická analýza FHD vedla také k potvrzení diagnózy dalších vzácných sydromů. Identifikací variant v genu HPS1 jsme potvrdili diagnózu syndromu Heřmanský-Pudlák (AR dědičnost), který se u probandky manifestoval zejména vrozeným albinismem, trombocytopatií a rozvojem závažné pulmonární fibrózy v 57 letech. V tomto případě se nám podařilo charakterizovat novou, dosud nepopsanou variantu c.1189delC (typu nonsense) na maternální alele, přičemž na paternální alele byla identifikována patogenní varianta c.1507C>T [15]. V další rodině jsme u dvou sester detekovali opětovně vzácnou variantu c.1189delC v genu HPS1 v homozygotním stavu. Probandka (ročník 1979) trpí vrozeným albinismem, plicním postižením, nystagmusem, zvýšenou krvácivostí a léčí se s vysokým krevním tlakem. Zatímco mladší sestra (ročník 1985) fenotypově odpovídající vrozenému albinismu je zatím bez symptomů nemoci. Pomocí WES byla také vyšetřována pacientka s fenotypem IT a makrotrombocytózou (střední objem trombocytů – MPV: 15 fl), která od dětství trpěla diparetickou formou dětské mozkové obrny, mentální retardací a sekundární epilepsií. Na podkladě jasného záchytu varianty c.3493C>T v genu MYH9 byl u ní diagnostikován Sebastianův syndrom. V tomto případě se pravděpodobně jednalo o variantu vzniklou de novo [16]. Dále byla v jedné rodině charakterizována nová vzácná varianta c.998G>C v genu WAS asociovaná s výskytem syndromu Wiskott-Aldrich. Tento nález pomohl upřesnit diagnózu a nastavit správnou léčbu, jelikož pacient byl původně diagnostikován jako Bernard-Soulierův syndrom. Raritní monoalelický Bernard-Soulierův syndrom byl detekován ve dvou rodinách s makrotrombocytopenií a mírnými krvácivými projevy. V prvním případě byla identifikovaná vzácná varianta c.176T>G v genu GP1BA u šesti postižených členů rodiny s hodnotou trombocytů (62–126 × 109/l) a ve druhém případě byla detekována pravděpodobně patogenní varianta c.98G>A v genu GP1BA u čtyř pacientů (trombocyty: 12–102 × 109/l; MPV: 10–15 fl) [17,18].

V naší kohortě pacientů jsme také vyšetřovali několik rodin cizího etnika s diagnostikovanou těžkou anemií, mikrocytózou a suspektní α-/β- talasemií. Metodický přístup se odlišoval použitím Sangerova sekvenování pro detekci SNV/indelů a metodou MLPA pro detekci CNV v genech HBA1, HBA2 a HBB. Byly popsány jak známé sekvenační varianty c.52A>T a c.20delA v genu HBB, tak i rozsáhlé delece označované jako -MED1 (HBA1P1 pseudogen, promotorová oblast HBA2 genu, HBA2 gen, jeho 3’- nepřekládaná oblast) a jako delece α-3,7 (HBA2 gen, promotorová oblast HBA1 genu) v heterozygotním i homozygotním stavu.

Tab. 1. Přehled významných identifi kovaných genetických variant segregujících s fenotypem FHD v naší kohortě pacientů.
Tab. 1. Přehled významných identifi kovaných genetických variant segregujících s fenotypem FHD v naší kohortě pacientů.

Diskuze a závěr

Výzkumně se dlouhodobě zabýváme charakterizací genetických variant u rodin s FHD a stanovením predispozic k rozvoji onkologického onemocnění. Vzhledem k heterogenitě fenotypů a širokému spektru defektních genů se nám u většiny diagnóz osvědčilo využití metodického přístupu WES, doplněného o Sangerovo sekvenování a metodu MLPA. V analyzované kohortě 92 rodin jsme u 70 rodin dokázali identifikovat kauzální genetickou variantu segregující s fenotypem v rodině, což vedlo ke stanovení/upřesnění diagnózy u pacientů a k objasnění mnoha dosud nevyřešených případů. Ukázalo se, že většina kauzálních variant je unikátní pro konkrétní rodinu a v širší populaci se nevyskytuje. Pozitivní záchyty představovaly nejen již popsané patogenní varianty, ale také velmi často nové varianty typu VUS. Některé z těchto variant navíc predisponovaly k rozvoji malignit v rodině či jiných orgánových dysfunkcí v průběhu života jedince. Naše údaje o nových variantách rozšiřují obecné znalosti v této oblasti, nicméně zároveň poukazují na nutnost prokázat funkční dopad VUS variant pomocí proteomických technologií.

Ve FN Brno se genetická analýza postupně stala součástí standardního hematologického vyšetření u pacientů suspektních pro FHD. Správná diagnostika a identifikace germinální varianty genu jsou klíčové pro stanovení rizik spojených s diagnózou. Potvrzení diagnózy pacienta má také kladný dopad na jeho individualizovanou péči a následnou léčbu.

 

Dedikace

Práce byla podpořena grantovým projektem MZ ČR (grant AZV NU20-08-00137), grantovým projektem A-C-G-T z EFRR (CZ.02.1.01/0.0/0.0/16_026/0008448), MZ ČR – RVO (FNBr, 65269705) a MUNI/A/1224/2022.

 

Ing. Zuzana Vrzalová, Ph.D.
CEITEC MU a FN Brno
Kamenice 753/5
625 00 Brno
e-mail: zuzana.vrzalova@ceitec.muni.cz

Obdrženo/Submitted: 25. 8. 2023
Přijato/Accepted: 4. 10. 2023


Sources

1. Bluteau O, Sebert M, Leblanc T et al. A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. Blood 2018; 131 (7): 717–732. doi: 10.1182/blood-2017-09-806489.

2. Bodine D, Berliner N. Introduction to the review series on “bone marrow failure”. Blood 2014; 124 (18): 2755. doi: 10.1182/blood-2014-08-587394.

3. Collins J, Dokal I. Inherited bone marrow failure syndromes. Hematology 2015; 20 (7): 433–434. doi: 10.1179/1024533215Z.000000000381.

4. Russo R, Andolfo I, Manna F et al. Multi-gene panel testing improves diagnosis and management of patients with hereditary anemias. Am J Hematol 2018; 93 (5): 672–682. doi: 10.1002/ajh.25058.

5. Savoia A. Molecular basis of inherited thrombocytopenias. Clin Genet 2016; 89 (2): 154–162. doi: 10.1111/cge.12607.

6. Noris P, Pecci A. Hereditary thrombocytopenias: a growing list of disorders. Hematology Am Soc Hematol Educ Program 2017; 1: 385-399. doi: 10.1182/asheducation-2017.1.385.

7. Vandenberghe P, Beel K. Severe congenital neutropenia, a genetically heterogeneous disease group with an increased risk of AML/MDS. Pediatr Rep 2011; 22; 3 (Suppl 2): e9. doi: 10.4081/pr.2011.s2.e9.

8. Salavoura K, Kolialexi A, Tsangaris G et al. Development of cancer in patients with primary immunodeficiencies. Anticancer Res 2008; 28 (2B): 1263–1269.

9. Stenson PD, Mort M, Ball EV et al. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 2017; 136 (6): 665–677. doi: 10.1007/s00439-017-1779-6.

10. Richards S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17 (5): 405–424. doi: 10.1038/gim.2015.30.

11. Staňo Kozubík K, Radová L, Pešová M et al. C-terminal RUNX1 mutation in familial platelet disorder with predisposition to myeloid malignancies. Int J Hematol 2018; 108 (6): 652–657. doi: 10.1007/s12185-018-2514-3.

12. Kozubik KS, Radova L, Reblova K et al. Functional analysis of germline ETV6 W380R mutation causing inherited thrombocytopenia and secondary acute lymphoblastic leukemia or essential thrombocythemia. Platelets 2021; 32 (6): 838–841. doi: 10.1080/09537104.2020.1802416.

13. Doubková M, Staňo Kozubík K, Radová L et al. A novel germline mutation of the SFTPA1 gene in familial interstitial pneumonia. Hum Genome Var 2019; 6: 12. doi: 10.1038/s41439-019-0044-z.

14. Noris P, Favier R, Alessi MC et al. ANKRD26-related thrombocytopenia nad myeloid malignancies. Blood 2013; 122 (11): 1987–1989.

15. Doubková M, Trizuljak J, Vrzalová Z et al. Novel genetic variant of HPS1 gene in Hermansky-Pudlak syndrome with fulminant progression of pulmonary fibrosis: a case report. BMC Pulm Med 2019; 19 (1): 178. doi: 10.1186/s12890-019-0941-4.

16. Sýkora M, Vrzalová Z, Vondráková J et al. Dědičná trombocytopenie na podkladě patogenní varianty genu MYH9 diagnostikovaná u dospělé ženy. TAHD 2020; 26 (4): 327–332.

17. Trizuljak J, Staňo Kozubík K, Radová L. et al. A novel germline mutation in GP1BA gene N-terminal domain in monoallelic Bernard-Soulier syndrome. Platelets 2018; 29 (8) : 827–833. doi: 10.1080/ 09537104.2018.1529300.

18. Skalníková M, Staňo Kozubík K, Trizuljak J et al. A GP1BA variant in a Czech family with monoallelic Bernard-Soulier syndrome. Int J Mol Sci 2022; 23 (2) : 885. doi: 10.3390/ ijms23020885.

Labels
Paediatric clinical oncology Surgery Clinical oncology

Article was published in

Clinical Oncology

Issue Supplementum 1

2023 Issue Supplementum 1

Most read in this issue
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#