Radiotherapy and radiosensitivity syndromes in DNA repair gene mutations
Authors:
R. Lohynská 1,2; Z. Pechačová 2; E. Mazaná 1; J. Čejková 1; A. Nováková-Jirešová 1; J. Hornová 1; M. Langová 3
Authors‘ workplace:
Onkologická klinika 1. LF UK a FTN, Praha
1; Ústav radiační onkologie, 1. LF UK a FN Bulovka, Praha
2; Oddělení lékařské genetiky FTN, Praha
3
Published in:
Klin Onkol 2022; 35(2): 119-127
Category:
Review
doi:
https://doi.org/10.48095/ccko2022119
Overview
Background: Ionizing radiation DNA damage is the main mechanism of radiotherapy (RT) action and the outcome of treatment and healthy tissue toxicity is influenced by a number of external and internal factors, including mutations in DNA damage recognition and repair. Disorders of DNA repair may result in increased sensitivity to cancer treatment. Purpose: The mechanism of DNA repair and an overview of genetic syndromes with mutations in genes involved in DNA repair clarify the accelerated carcinogenesis and increased radiosensitivity in RT cancers. Most radiosensitivity syndromes are autosomal recessively inherited; examples are ataxia teleangiectasia, Nijmegen breakage syndrome, xeroderma pigmentosum, Cockayne syndrome, Bloom syndrome and Werner syndrome. Conclusion: Radiotherapy is contraindicated in most homozygous patients with recessive radiosensitivity syndromes. Asymptomatic heterozygotes may have an increased risk of tumor incidence and a small part of them slightly increased risk of RT intolerance; however, this does not limit RT treatment. The high risk of secondary malignancies after radiotherapy is a contraindication to adjuvant RT in Li-Fraumeni syndrome.
Keywords:
DNA repair – radiotherapy – radiosensitivity
Sources
1. Joiner MC, van der Kogel A. Basic clinical radiobiology. CRC Press/Taylor & Francis Group 2019.
2. Lohynská R. Časový faktor v radikální radioterapii nádorů hlavy a krku. 2. lékařská fakulta Univerzity Karlovy: Praha 2007.
3. Munro TR. The relative radiosensitivity of the nucleus and cytoplasm of Chinese hamster fibroblasts. Radiat Res 1970; 42 (3): 451–470.
4. Chistiakov DA, Voronova NV, Chistiakov PA. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients. Acta Oncol 2008; 47 (5): 809–824. doi: 10.1080/02841860801885969.
5. Bouffler SD. Evidence for variation in human radiosensitivity and its potential impact on radiological protection. Ann ICRP 2016; 45 (1 Suppl): 280–289. doi: 10.1177/0146645315623158.
6. Filippo JS, Sung P, Klein H. Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 2008; 77 (1): 229–257. doi: 10.1146/annurev.biochem.77.061 306.125255.
7. Krejci L, Altmannova V, Spirek M et al. Homologous recombination and its regulation. Nucleic Acids Research 2012; 40 (13): 5795–5818. doi: 10.1093/nar/gks270.
8. Petráková K, Palácová M, Schneiderová M et al. Hereditary breast and ovarian cancer syndrome. Klin Onkol 2016; 29 (Suppl 1): S14–S21. doi: 10.14735/amko2016S14.
9. Zikán M. Gynekologická prevence a gynekologické aspekty péče u nosiček mutací genů BRCA1 a BRCA2. Klin Onkol 2016; 29 (Suppl 1): S22–S30. doi: 10.14735/amko2016S22.
10. Šlampa P, Smilek P. Nádory hlavy a krku. Praha: Mladá Fronta 2016.
11. Baumann M, Krause M, Cordes N et al. Molecular radio-oncology. Berlin: Springer 2016.
12. O‘Driscoll M, Gennery AR, Seidel J et al. An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR-Seckel syndrome. DNA Repair (Amst) 2004; 3 (8–9): 1227–1235. doi: 10.1016/j.dnarep.2004.03.025.
13. Yue X, Bai C, Xie D et al. DNA-PKcs: A multi-faceted player in DNA damage response. Front Genet 2020; 11: 607428. doi: 10.3389/fgene.2020.607428.
14. Seki M, Miyazawa H, Tada S et al. Molecular cloning of cDNA encoding human DNA helicase Q1 which has homology to Escherichia coli Rec Q helicase and localization of the gene at chromosome 12p12. Nucleic Acids Res 1994; 22 (22): 4566–4573. doi: 10.1093/nar/22.22.4 566.
15. Ellis NA, Groden J, Ye TZ et al. The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 1995; 83 (4): 655–666. doi: 10.1016/0092-8674 (95) 901 05-1.
16. Yu CE, Oshima J, Fu YH et al. Positional cloning of the Werner’s syndrome gene. Science 1996; 272 (5259): 258–262. doi: 10.1126/science.272.5259.258.
17. Kitao S, Ohsugi I, Ichikawa K et al. Cloning of two new human helicase genes of the RecQ family: biological significance of multiple species in higher eukaryotes. Genomics 1998; 54 (3): 443–452. doi: 10.1006/geno.1998. 5595.
18. Yu CE, Oshima J, Wijsman EM et al. Mutations in the consensus helicase domains of the Werner syndrome gene. Werner’s Syndrome Collaborative Group. Am J Hum Genet 1997; 60 (2): 330–341.
19. Kitao S, Shimamoto A, Goto M et al. Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nat Genet 1999; 22 (1): 82–84. doi: 10.1038/8788.
20. Wilson BT, Lochan A, Stark Z et al. Novel missense mutations in a conserved loop between ERCC6 (CSB) helicase motifs V and VI: insights into Cockayne syndrome. Am J Med Genet A 2016; 170 (3): 773–776. doi: 10.1002/ajmg.a.37501.
21. Chisholm KM, Aubert SD, Freese KP et al. A genomewide screen for suppressors of Alu-mediated rearrangements reveals a role for PIF1. PLoS One 2012; 7 (2): e30748. doi: 10.1371/journal.pone.0030748.
22. Bennett CL, Dastidar SG, Ling SC et al. Senataxin mutations elicit motor neuron degeneration phenotypes and yield TDP-43 mislocalization in ALS4 mice and human patients. Acta Neuropathol 2018; 136 (3): 425–443. doi: 10.1007/s00401-018-1852-9.
23. Choudry TN, Hilton-Jones D, Lennox G et al. Ataxia with oculomotor apraxia type 2: an evolving axonal neuropathy. Pract Neurol 2018; 18 (1): 52–56. doi: 10.1136/practneurol-2017-001711.
24. Raney KD, Byrd AK, Aarattuthodiyil S. Structure and mechanisms of SF1 DNA helicases. Adv Exp Med Biol 2013; 767: 17–46. doi: 10.1007/978-1-4614-5037-5_2.
25. Janatová M, Borecká M, Soukupová J et al. PALB2 jako další kandidátní gen pro genetické testování u pacientů s hereditárním karcinomem prsu v České republice. Klin Onkol 2016; 29 (Suppl 1): 31–34. doi: 10.14735/amko2016S31.
26. Ferri D, Orioli D, Botta E. Heterogeneity and overlaps in nucleotide excision repair disorders. Clin Genet 2020; 97 (1): 12–24. doi: 10.1111/cge.13545.
27. Kleinerman RA. Radiation-sensitive genetically susceptible pediatric sub-populations. Pediatr Radiol 2009; 39 (Suppl 1): S27–S31. doi: 10.1007/s00247-008- 1015-6.
28. Bernstein JL, WECARE Study Collaborative Group, Concannon P. ATM, radiation, and the risk of second primary breast cancer. Int J Radiat Biol 2017; 93 (10): 1121–1127. doi: 10.1080/09553002.2017.1344363.
29. Goldgar DE, Healey S, Dowty JG et al. Rare variants in the ATM gene and risk of breast cancer. Breast Cancer Res 2011; 13 (4): R73. doi: 10.1186/bcr2919.
30. Guogyte K, Plieskiene A, Ladygiene R et al. Assessment of correlation between chromosomal radiosensitivity of peripheral blood lymphocytes after in vitro irradiation and normal tissue side effects for cancer patients undergoing radiotherapy. Genome Integr 2017; 8: 1. doi: 10.4103/2041-9414.198907.
31. De Ruyck K, Van Eijkeren M, Claes K et al. Radiation-induced damage to normal tissues after radiotherapy in patients treated for gynecologic tumors: association with single nucleotide polymorphisms in XRCC1, XRCC3, and OGG1 genes and in vitro chromosomal radiosensitivity in lymphocytes. Int J Radiat Oncol Biol Phys 2005; 62 (4): 1140–1149. doi: 10.1016/j.ijrobp.2004.12.027.
32. Djuzenova CS, Rothfuss A, Oppitz U et al. Response to X-irradiation of Fanconi anemia homozygous and heterozygous cells assessed by the single-cell gel electrophoresis (comet) assay. Lab Invest 2001; 81 (2): 185–192. doi: 10.1038/labinvest.3780226.
33. Djuzenova C, Flentje M, Plowman PN. Radiation response in vitro of fibroblasts from a fanconi anemia patient with marked clinical radiosensitivity. Strahlenther Onkol 2004; 180 (12): 789–797. doi: 10.1007/s00066-004-1250-1.
34. Palumbo E, Piotto C, Calura E et al. Individual radiosensitivity in oncological patients: linking adverse normal tissue reactions and genetic features. Front Oncol 2019; 9: 987. doi: 10.3389/fonc.2019.00987.
35. Burger S, Schindler D, Fehn M et al. Radiation-induced DNA damage and repair in peripheral blood mononuclear cells from Nijmegen breakage syndrome patients and carriers assessed by the Comet assay. Environ Mol Mutagen 2006; 47 (4): 260–270. doi: 10.1002/em. 20202.
36. Ostendorf BN, Terwey TH, Hemmati PG et al. Severe radiotoxicity in an allogeneic transplant recipient with a heterozygous ATM mutation. Eur J Haematol 2015; 95 (1): 90–92. doi: 10.1111/ejh.12400.
37. Sirák I, Šinkorová Z, Šenkeříková M et al. Hypersensitivity to chemoradiation in FANCA carrier with cervical carcinoma – a case report and review of the literature. Rep Pract Oncol Radiother 2015; 20 (4): 309–315. doi: 10.1016/j.rpor.2014.11.006.
38. Borg MF, Olver IN, Hill MP. Rothmund-Thomson syndrome and tolerance of chemoradiotherapy. Australas Radiol 1998; 42 (3): 216–218. doi: 10.1111/j.1440-1673.1998.tb00496.x.
39. Ma J, Setton J, Morris L et al. Genomic analysis of exceptional responders to radiotherapy reveals somatic mutations in ATM. Oncotarget 2017; 8 (6): 10312–10323. doi: 10.18632/oncotarget.14400.
40. Villani A, Shore A, Wasserman JD et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol 2016; 17 (9): 1295–1305. doi: 10.1016/S1470-2045 (16) 30249-2.
41. Foretová L, Stěrba J, Opletal P et al. Li-Fraumeni syndrome – a proposal of complex prevention care for carriers of TP53 mutation with total-body MRI. Klin Onkol 2012; 25 (Suppl 1). S49–S54.
42. Jerzak KJ, Mancuso T, Eisen A. Ataxia-telangiectasia gene (ATM) mutation heterozygosity in breast cancer: a narrative review. Curr Oncol 2018; 25 (2): e176–e180. doi: 10.3747/co.25.3707.
43. Heymann S, Delaloge S, Rahal A et al. Radio-induced malignancies after breast cancer postoperative radiotherapy in patients with Li-Fraumeni syndrome. Radiat Oncol 2010; 5: 104. doi: 10.1186/1748-717X-5-104.
44. Tung NM, Boughey JC, Pierce LJ et al. Management of hereditary breast cancer: American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology Guideline. J Clin Oncol 2020; 38 (18): 2080–2106. doi: 10.1200/JCO.20.00299.
45. Trombetta MG, Dragun A, Mayr NA et al. ASTRO radiation therapy summary of the ASCO-ASTRO-SSO guideline on management of hereditary breast cancer. Pract Radiat Oncol 2020; 10 (4): 235–242. doi: 10.1016/ j.prro.2020.04.003.
46. Online Mendelian Inheritance in Men. [online]. Available from: https: //omim.org.
Labels
Paediatric clinical oncology Surgery Clinical oncology Haematology ENT (Otorhinolaryngology) General practitioner for adults UrologyArticle was published in
Clinical Oncology
2022 Issue 2
Most read in this issue
- Acupuncture from the perspective of evidence-based medicine – options of clinical use based on National Comprehensive Cancer Network (NCCN) guidelines
- Radiotherapy and radiosensitivity syndromes in DNA repair gene mutations
- Hepatocellular carcinoma – prognostic criteria of individualized treatment
- Rehabilitation and physical activity in gynecological oncological diseases