Analýza minimální reziduální nemoci u mnohočetného myelomu pomocí multiparametrické průtokové cytometrie
:
L. Rihova 1; P. Vsianska 1; R. Bezdekova 1; R. Kralova 1; M. Penka 1; M. Krejci 2; L. Pour 2; R. Hájek 1,3
:
Department of Hematology, University Hospital Brno, Czech Republic
1; Department of Internal Medicine – Haematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
2; Department of Haematooncology, University Hospital Ostrava, Czech Republic
3
:
Klin Onkol 2017; 30(Supplementum2): 21-28
:
Review
prolekare.web.journal.doi_sk:
https://doi.org/10.14735/amko20172S21
Východiska:
Díky pokrokům v léčbě mnohočetného myelomu se značně zvýšil počet pacientů dosahujících remise onemocnění, a tedy detekce minimální reziduální choroby (minimal residual disease – MRD) se stala nepostradatelnou ke zhodnocení účinnosti léčby a k posouzení hloubky kompletní léčebné odpovědi. Multiparametrická průtoková cytometrie (multiparametric flow cytometry – MFC) je v současnosti nejpoužívanější metodou pro stanovení a monitorování přítomnosti MRD v kostní dřeni pacientů s mnohočetným myelomem, nicméně mohou být využity také metody na molekulární úrovni. Je zřejmé, že protokol použitý pro stanovení MFC-MRD může významně ovlivnit získané výsledky, přičemž standardizovaný a vysoce senzitivní přístup „next generation flow” je již dostupný. Přínos stanovení MRD pro predikci přežití bez progrese onemocnění a celkového přežití je znám, nicméně nedávné výzkumy ukazují, že MRD negativita dokonce překonává prognostickou hodnotu dosažení kompletní léčebné odpovědi pro přežití bez progrese a celkové přežití.
Cíl:
Souhrnný článek je zaměřen na využití MFC v analýze MRD u mnohočetného myelomu. Zmíněny jsou také technické aspekty a zhodnocení klinického přínosu tohoto stanovení.
Závěr:
Informace o hladině MRD stanovené pomocí vysoce senzitivní a reprodukovatelné MFC může být využita jako biomarker k hodnocení účinnosti rozdílných léčebných přístupů, k rozhodování o vhodnosti léčby, ale také může sloužit jako parametr nahrazující celkové přežití u pacientů s mnohočetným myelomem.
Klíčová slova:
mnohočetný myelom – minimální reziduální nemoc – průtoková cytometrie – plazmatické buňky
Podpořeno z programového projektu Ministerstva zdravotnictví ČR s reg. č. 17-30089A.
Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.
Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do biomedicínských časopisů.
Obdrženo:
25. 6. 2017
Přijato:
29. 6. 2017
Sources
1. Mateos MV, Ocio EM, Paiva B et al. Treatment for patients with newly diagnosed multiple myeloma in 2015. Blood Rev 2015; 29 (6): 387–403. doi: 10.1016/j.blre.2015.06. 001.
2. Paiva B, van Dongen JJ, Orfao A. New criteria for response assessment: role of minimal residual disease in multiple myeloma. Blood 2015; 125 (20): 3059–3068. doi: 10.1182/blood-2014-11-568907.
3. Oldaker TA, Wallace PK, Barnett D. Flow cytometry quality requirements for monitoring of minimal disease in plasma cell myeloma. Cytometry B Clin Cytom 2016; 90 (1): 40–46. doi: 10.1002/cyto.b.21276.
4. Rawstron AC, Paiva B, Stetler-Stevenson M. Assessment of minimal residual disease in myeloma and the need for a consensus approach. Cytometry B Clin Cytom 2016; 90 (1): 21–25. doi: 10.1002/cyto.b.21272.
5. Puig N, Sarasquete ME, Balanzategui A et al. Critical evaluation of ASO RQ-PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry. Leukemia 2015; 28 (2): 391–397. doi: 10.1038/leu.2013.217.
6. Martínez-López J, Paiva B, López-Anglada L et al. Spanish Multiple Myeloma Group/Program for the Study of Malignant Blood Diseases Therapeutics (GEM/PETHEMA) Cooperative Study Group. Critical analysis of the stringent complete response in multiple myeloma: contribution of sFLC and bone marrow clonality. Blood 2015; 126 (7): 858–862. doi: 10.1182/blood-2015-04-638742.
7. Flores-Montero J, Sanoja-Flores L, Paiva B et al. Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. In press 2017. doi: 10.1038/leu.2017.29.
8. Flores-Montero J, de Tute R, Paiva B et al. Immunophenotype of normal vs. myeloma plasma cells: Toward antibody panel specifications for MRD detection in multiple myeloma. Cytometry B Clin Cytom 2016; 90 (1): 61–72. doi: 10.1002/cyto.b.21265.
9. Martinez-Lopez J, Blade J, Mateos MV et al. Long-term prognostic significance of response in multiple myeloma after stem cell transplantation. Blood 2011; 118 (3): 529–534. doi: 10.1182/blood-2011-01-332320.
10. Paiva B, Vidriales MB, Cerveró J et al. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood 2008; 112 (10): 4017–4023. doi: 10.1182/blood-2008-05-159624.
11. Paiva B, Chandia M, Puig N et al. The prognostic value of multiparameter flow cytometry minimal residual disease assessment in relapsed multiple myeloma. Haematologica 2015; 100 (2): e53–e55. doi: 10.3324/haematol.2014.115162.
12. Rawstron AC, Gregory WM, de Tute RM et al. Minimal residual disease in myeloma by flow cytometry: independent prediction of survival benefit per log reduction. Blood 2015; 125 (12): 1932–1935. doi: 10.1182/blood-2014-07-590166.
13. Lahuerta JJ, Paiva B, Vidriales MB et al. Depth of response in multiple myeloma: a pooled analysis of three PETHEMA/GEM clinical trials. J Clin Oncol. In press 2017. doi: 10.1200/JCO.2016.69.2517.
14. Latreille J, Barlogie B, Johnston D et al. Ploidy and proliferative characteristics in monoclonal gammopathies. Blood 1982; 59 (1): 43–51.
15. Zeile G. Intracytoplasmic immunofluorescence in multiple myeloma. Cytometry 1980; 1 (1): 37–34.
16. King MA, Nelson DS. Tumor cell heterogeneity in multiple myeloma: antigenic, morphologic, and functional studies of cells from blood and bone marrow. Blood 1989; 73 (7): 1925–1935.
17. Terstappen LW, Johnsen S, Segers-Nolten IM et al. Identification and characterization of plasma cells in normal human bone marrow by high-resolution flow cytometry. Blood 1990; 76 (9): 1739–1747.
18. Ocqueteau M, Orfao A, Almeida J et al. Immunophenotypic characterization of plasma cells from monoclonal gammopathy of undetermined significance patients. Implications for the differential diagnosis between MGUS and multiple myeloma. Am J Pathol 1998; 152 (6): 1655–1665.
19. Kovarova L, Buresova I, Buchler T et al. Phenotype of plasma cells in multiple myeloma and monoclonal gammopathy of undetermined significance. Neoplasma 2009; 56 (6): 526–532.
20. Rawstron AC, Orfao A, Beksac M et al. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica 2008; 93 (3): 431–438. doi: 10.3324/haematol.11080.
21. Rihova L, Muthu Raja KR, Calheiros Leite LA et al. Immunophenotyping in multiple myeloma and others monoclonal gammopathies. In: Multiple myeloma – a quick reflection on the fast progress. InTech 2013 [online]. Available from: https: //cdn.intechopen.com/pdfs-wm/43654.pdf.
22. de Tute RM, Jack AS, Child JA et al. A single-tube six-colour flow cytometry screening assay for the detection of minimal residual disease in myeloma. Leukemia 2007; 21 (9): 2046–2049.
23. Kovarova L, Varmuzova T, Zarbochova P et al. Flow cytometry in monoclonal gammopathies. Klin Onkol 2011; 24 (Suppl 2): S24–S29.
24. Robillard N, Béné MC, Moreau P et al. A single-tube multiparameter seven-colour flow cytometry strategy for the detection of malignant plasma cells in multiple myeloma. Blood Cancer J 2013; 3: e134. doi: 10.1038/bcj.2013.33.
25. Bezdekova R, Penka M, Hajek R et al. Circulating plasma cell in monoclonal gammopathies. Klin Onkol 2017; 30 (Suppl 2): 2S29–2S34. doi: 10.14735/amko20172 S29.
26. Paiva B, Almeida J, Pérez-Andrés M et al. Utility of flow cytometry immunophenotyping in multiple myeloma and other clonal plasma cell-related disorders. Cytometry B Clin Cytom 2010; 78 (4): 239–252. doi: 10.1002/cyto.b.20512.
27. Raja KR, Kovarova L, Hajek R. Review of phenotypic markers used in flow cytometric analysis of MGUS and MM, and applicability of flow cytometry in other plasma cell disorders. Br J Haematol 2010; 149 (3): 334–351. doi: 10.1111/j.1365-2141.2010.08121.x.
28. Kumar S, Paiva B, Anderson K et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol 2016; 17 (8): e328–e346. doi: 10.1016/S1470-2045 (16) 30206-6.
29. Rawstron AC, Davies FE, DasGupta R et al. Flow cytometric disease monitoring in multiple myeloma: the relationship between normal and neoplastic plasma cells predicts outcome after transplantation. Blood 2002; 100 (9): 3095–3100.
30. San Miguel JF, Almeida J, Mateo G et al. Immunophenotypic evaluation of the plasma cell compartment in multiple myeloma: a tool for comparing the efficacy of different treatment strategies and predicting outcome. Blood 2002; 99 (5): 1853–1856.
31. Durie BG, Harousseau JL, Miguel JS et al. International uniform response criteria for multiple myeloma. Leukemia 2006; 20 (9): 1467–1473.
32. Rajkumar SV, Harousseau JL, Durie B et al. Consensus recommendations for the uniform reporting of clinical trials: report of the International Myeloma Workshop Consensus Panel 1. Blood 2011; 117 (18): 4691–4695. doi: 10.1182/blood-2010-10-299487.
33. van Dongen JJ, Lhermitte L, Böttcher S et al. EuroFlow Consortium (EU-FP6, LSHB-CT-2006-018708). EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012; 26 (9): 1908–1975. doi: 10.1038/leu.2012.120.
34. Stetler-Stevenson M, Paiva B, Stoolman L et al. Consensus guidelines for myeloma minimal residual disease sample staining and data acquisition. Cytometry B Clin Cytom 2016; 90 (1): 26–30. doi: 10.1002/cyto.b.21 249.
35. Arroz M, Came N, Lin P et al. Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting. Cytometry B Clin Cytom 2016; 90 (1): 31–39. doi: 10.1002/cyto.b.21228.
36. Pojero F, Flores-Montero J, Sanoja L et al. Utility of CD54, CD229, and CD319 for the identification of plasma cells in patients with clonal plasma cell diseases. Cytometry B Clin Cytom 2016; 90 (1): 91–100. doi: 10.1002/cyto.b.21269.
37. Paiva B, Corchete LA, Vidriales MB et al. Phenotypic and genomic analysis of multiple myeloma minimal residual disease tumor cells: a new model to understand chemoresistance. Blood 2016; 127 (15): 1896–1906. doi: 10.1182/blood-2015-08-665679.
38. Rawstron AC, Child JA, de Tute RM et al. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX Study. J Clin Oncol 2013; 31 (20): 2540–2547. doi: 10.1200/JCO.2012.46. 2119.
39. de Tute RM, Rawstron AC, Gregory WM et al. Minimal residual disease following autologous stem cell transplant in myeloma: impact on outcome is independent of induction regimen. Haematologica 2016; 101 (2): e69–e71. doi: 10.3324/haematol.2015.128215.
40. Paiva B, Cedena MT, Puig N et al. Minimal residual disease monitoring and immune profiling in multiple myeloma in elderly patients. Blood 2016; 127 (25): 3165–3174. doi: 10.1182/blood-2016-03-705319.
41. Hofste op Bruinink D, Oliva S, Rihova L et al. Flowcytometric minimal residual disease assessment in the EMN-02/ HOVON-95 MM trial: used methods and a comparison of their sensitivity. Blood 2016; 128: 2072. [online]. Available from: http: //www.bloodjournal.org/content/128/22/2072.
42. Zatopkova M, Filipova J, Jelinek T et al. Whole exome sequencing of aberrant plasma cells in patient with multiple myeloma minimal residual disease. Klin Onkol 2017; 30 (Suppl 2): 2S75–2S80. doi: 10.14735/amko20172S75.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology
2017 Issue Supplementum2
Most read in this issue
- Minimal Residual Disease Assessment in Multiple Myeloma by Multiparametric Flow Cytometry
- CRISPR in Research and Treatment of Multiple Myeloma
- Epidemiology of Multiple Myeloma in the Czech Republic
- Diagnostic Tools of Waldenström’s Macroglobulinemia – Best Possibilities for Non-invasive and Long-term Disease Monitoring