The Concept of Immunogenic Cell Death in Antitumor Immunity
Authors:
J. Fučíková; J. Bartůňková; R. Špíšek
Authors‘ workplace:
Ústav imunologie, 2. LF UK a FN v Motole, PrahaSotio a. s., Praha
Published in:
Klin Onkol 2015; 28(Supplementum 4): 48-55
Category:
Generals
doi:
https://doi.org/10.14735/amko20154S48
Overview
Cancer cell death can be immunogenic or nonimmunogenic depending on the initiating stimulus. The immunogenic characteristics of immunogenic cell death are mainly mediated by damage-associated molecular patterns represented by preapoptotic exposure of calreticulin and heat shock proteins (HSP70 and HSP90) from endoplasmic reticulum at the cell surface and active secretion of adenosintriphospate. Other damage-associated molecular patterns are produced in late stage apoptosis as high mobility group box 1 protein (HMGB1) into the extracellular milieu. Such signals operate on various receptors expressed by antigen presenting cells, mainly by population of dendritic cells, to stimulate the activation of antigen specific T-cell response. In this review, we describe the current known immunogenic cell death inducers and their potential to activate antitumor immune response.
Key words:
calreticulin – dendritic cell – immunogenic cell death – antitumor immune response
This work was supported by grant IGA MH CZ – NT 12402-5 and MH CZ – DRO, University Hospital Motol, Prague, Czech Republic 00064203.
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.
Submitted:
29. 7. 2015
Accepted:
1. 10. 2015
Sources
1. Fridman WH, Pagès F, Sautès‑ Fridman C et al. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012; 12(4): 298– 306. doi: 10.1038/ nrc3245.
2. Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 2006; 6(10): 715– 727.
3. Mittal D, Coutin MM, Schreiber RD et al. New insights into cancer immunoediting and its three component phases – elimination, equilibrium and escape. Curr Opin Immunol 2014; 27: 16– 25. doi: 10.1016/ j.coi.2014.01.004.
4. Green DR, Ferguson T, Zitvogel L et al. Immunogenic and tolerogenic cell death. Nat Rev Immunol 2009; 9(5): 353– 363. doi: 10.1038/ nri2545.
5. Kroemer G, Galluzzi L, Kepp O et al. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31: 51– 72. doi: 10.1146/ annurev‑ immunol‑ 032712‑ 100008.
6. Dudek AM, Garg AD, Krysko DV et al. Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev 2013; 24(4): 319– 333. doi: 10.1016/ j.cytogfr.2013.01.005.
7. Garg AD, Nowis D, Golab J et al. Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim Biophys Acta 2010; 1805(1): 53– 71. doi: 10.1016/ j.bbcan.2009.08.003.
8. Garg AD, Dudek AM, Agostinis P. Cancer immunogenicity, danger signals, and DAMPs: what, when, and how? Biofactors 2013; 39(4): 355– 367. doi: 10.1002/ biof.1125.
9. Panaretakis T, Kepp O, Brockmeier U et al. Mechanisms of pre‑apoptotic calreticulin exposure in immunogenic cell death. EMBO J 2009; 28(5): 578– 590. doi: 10.1038/ emboj.2009.1.
10. Spisek R, Charalambous A, Mazumder A et al. Bortezomib enhances dendritic cell (DC)- mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood 2007; 109(11): 4839– 4845.
11. Garg AD, Krysko DV, Verfaillie T et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 2012; 31(5): 1062– 1079. doi: 10.1038/ emboj.2011.497.
12. Apetoh L, Ghiringhelli F, Tesniere A et al. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 2007; 220: 47– 59.
13. Krysko DV, Vandenabeele P. From regulation of dying cell engulfment to development of anti‑cancer therapy. Cell Death Differ 2008; 15(1): 29– 38.
14. Fucikova J, Kralikova P, Fialova A et al. Human tumor cells killed by anthracyclines induce a tumor‑ specific immune response. Cancer Res 2011; 71(14): 4821– 4833. doi: 10.1158/ 0008‑ 5472.CAN‑ 11‑ 0950.
15. Fucikova J, Moserova I, Truxova I et al. High hydrostatic pressure induces immunogenic cell death in human tumor cells. Int J Cancer 2014; 135(5): 1165– 1177. doi: 10.1002/ ijc.28766.
16. Obeid M, Tesniere A, Ghiringhelli F et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007; 13(1): 54– 61.
17. Krysko DV, Garg AD, Kaczmarek A et al. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012; 12(12): 860– 875. doi: 10.1038/ nrc3380.
18. Apetoh L, Mignot G, Panaretakis T et al. Immunogenicity of anthracyclines: moving towards more personalized medicine. Trends Mol Med 2008; 14(4): 141– 151. doi: 10.1016/ j.molmed.2008.02.002.
19. Michaud M, Martins I, Sukkurwala AQ et al. Autophagy‑ dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334(6062): 1573– 1577. doi: 10.1126/ science.1208347.
20. Elliott MR, Chekeni FB, Trampont PC et al. Nucleotides released by apoptotic cells act as a find‑ me signal to promote phagocytic clearance. Nature 2009; 461(7261): 282– 286. doi: 10.1038/ nature08296.
21. Tesniere A, Schlemmer F, Boige V et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 2010; 29(4): 482– 491. doi: 10.1038/ onc.2009.356.
22. Liu WM, Fowler DW, Smith P et al. Pre‑treatment with chemotherapy can enhance the antigenicity and immunogenicity of tumours by promoting adaptive immune responses. Br J Cancer 2010; 102(1): 115– 123. doi: 10.1038/ sj.bjc.6605465.
23. Schiavoni G, Sistigu A, Valentini M et al. Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res 2011; 71(3): 768– 778. doi: 10.1158/ 0008‑ 5472.CAN‑ 10‑ 2788.
24. Nakahara T, Uchi H, Lesokhin AM et al. Cyclophosphamide enhances immunity by modulating the balance of dendritic cell subsets in lymphoid organs. Blood 2010; 115(22): 4384– 4392. doi: 10.1182/ blood‑ 2009‑ 11‑ 251231.
25. Podrazil M, Horvath R, Becht E et al. Phase I/ II clinical trial of dendritic‑ cell based immunotherapy (DCVAC/ PCa) combined with chemotherapy in patients with metastatic, castration‑resistant prostate cancer. Oncotarget 2015; 6(20): 18192– 18205.
26. Audia S, Nicolas A, Cathelin D et al. Increase of CD4+ CD25+ regulatory T cells in the peripheral blood of patients with metastatic carcinoma: a phase I clinical trial using cyclophosphamide and immunotherapy to eliminate CD4+CD25+ T lymphocytes. Clin Exp Immunol 2007; 150(3): 523– 530.
27. Matar P, Rozados VR, Gervasoni SI et al. Th2/ Th1 switch induced by a single low dose of cyclophosphamide in a rat metastatic lymphoma model. Cancer Immunol Immunother 2002; 50(11): 588– 596.
28. Demaria S, Santori FR, Ng B et al. Select forms of tumor cell apoptosis induce dendritic cell maturation. J Leukoc Biol 2005; 77(3): 361– 368.
29. Schumacher LY, Vo DD, Garban HJ et al. Immunosensitization of tumor cells to dendritic cell-activated immune responses with the proteasome inhibitor bortezomib (PS‑ 341, Velcade). J Immunol 2006; 176(8): 4757– 4565.
30. Cirone M, Di Renzo L, Lotti LV et al. Primary effusion lymphoma cell death induced by bortezomib and AG 490 activates dendritic cells through CD91. PLoS One 2012; 7(3): e31732. doi: 10.1371/ journal.pone.0031732.
31. Begovic M, Herberman R, Gorelik E. Increase in immunogenicity and sensitivity to natural cell‑ mediated cytotoxicity following in vitro exposure of MCA105 tumor cells to ultraviolet radiation. Cancer Res 1991; 51(19): 5153– 5159.
32. Brusa D, Garetto S, Chiorino G et al. Post‑apoptotic tumors are more palatable to dendritic cells and enhance their antigen cross‑ presentation activity. Vaccine 2008; 26(50): 6422– 6432. doi: 10.1016/ j.vaccine.2008.08.063.
33. Wu S, Tan M, Hu Y et al. Ultraviolet light activates NFkappaB through translational inhibition of IkappaBalpha synthesis. J Biol Chem 2004; 279(33): 34898– 34902.
34. Ma Y, Conforti R, Aymeric L et al. How to improve the immunogenicity of chemotherapy and radiotherapy. Cancer Metastasis Rev 2011; 30(1): 71– 82. doi: 10.1007/ s10555‑ 011‑ 9283‑ 2.
35. Hodge JW, Ardiani A, Farsaci B et al. The tipping point for combination therapy: cancer vaccines with radiation, chemotherapy, or targeted small molecule inhibitors. Semin Oncol 2012; 39(3): 323– 339. doi: 10.1053/ j.seminoncol.2012.02.006.
36. Obeid M, Panaretakis T, Joza N et al. Calreticulin exposure is required for the immunogenicity of gamma‑ irradiation and UVC light‑induced apoptosis. Cell Death Differ 2007; 14(10): 1848– 1850.
37. Huang J, Wang Y, Guo J et al. Radiation‑induced apoptosis along with local and systemic cytokine elaboration is associated with DC plus radiotherapy‑ mediated renal cell tumor regression. Clin Immunol 2007; 123(3): 298– 310.
38. Strome SE, Voss S, Wilcox R et al. Strategies for antigen loading of dendritic cells to enhance the antitumor immune response. Cancer Res 2002; 62(6): 1884– 1889.
39. Garnett CT, Palena C, Chakraborty M et al. Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res 2004; 64(21): 7985– 7994.
40. Weiss EM, Meister S, Janko C et al. High hydrostatic pressure treatment generates inactivated mammalian tumor cells with immunogeneic features. J Immunotoxicol 2010; 7(3): 194– 204. doi: 10.3109/ 15476911003657414.
41. Garg AD, Krysko DV, Vandenabeele P et al. Hypericin‑based photodynamic therapy induces surface exposure of damage‑associated molecular patterns like HSP70 and calreticulin. Cancer Immunol Immunother 2012; 61(2): 215– 221. doi: 10.1007/ s00262‑ 011‑ 1184‑ 2.
42. Garg AD, Krysko DV, Vandenabeele P et al. DAMPs and PDT‑ mediated photo‑ oxidative stress: exploring the unknown. Photochem Photobiol Sci 2011; 10(5): 670– 680. doi: 10.1039/ c0pp00294a.
43. Coffin RS. From virotherapy to oncolytic immunotherapy: where are we now? Curr Opin Virol 2015; 13: 93– 100. doi: 10.1016/j.coviro.2015.06.005.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology
2015 Issue Supplementum 4
Most read in this issue
- Side‑ effects of Modern Immunotherapy and How to Solve Them in the Clinics
- Immunotherapy of Urothelial Carcinoma of the Bladder – from BCG Vaccines to Targeted Therapy
- Escape Strategies of Tumors from Immune Surveillence
- The Concept of Immunogenic Cell Death in Antitumor Immunity