#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Nádorová hypoxia –  molekulárne mechanizmy a klinický význam


Authors: M. Takáčová 1,2;  S. Pastoreková 1,2
Authors‘ workplace: Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno 1;  Oddelenie molekulárnej medicíny, Virologický ústav, Slovenská akadémia vied, Bratislava, Slovenská republika 2
Published in: Klin Onkol 2015; 28(3): 183-190
Category: Reviews
doi: https://doi.org/10.14735/amko2015183

Overview

Kyslík je absolútne nevyhnutný pre fungovanie živých organizmov a zmeny v jeho koncentrácii majú dramatické následky. V nádorovom tkanive zohráva kyslík významnú úlohu v produkcii energie a modulácii oxidačno- redukčnej rovnováhy. Výsledkom jeho nedostatočnej hladiny je hypoxia, ktorá predstavuje charakteristickú črtu nádorového mikroprostredia. Kľúčovým koordinátorom odpovede na hypoxiu na bunkovej úrovni je hypoxiou- indukovaný transkripčný faktor, ktorý reguluje expresiu viac ako stovky génov zapojených do významných bunkových procesov. Z klinického hľadiska sú fenotypové zmeny navodené hypoxiou veľmi závažné. Nádorová hypoxia je asociovaná s rezistenciou voči terapii, progresiou a rekurenciou ochorenia ako aj so zvýšenou mortalitou. Preto intratumorová hypoxia predstavuje vážny terapeutický problém a jej detekcia môže prispieť k zlepšeniu stratifikácie pacientov pre vhodnú terapiu. V súčasnej dobe dostupné stratégie zamerané na detekciu hypoxie v nádorovom tkanive prinášajú pomerne dosť limitácií, napr. invazívnosť, nedostupnosť tkaniva, nízku citlivosť, nepresnú interpretáciu a pod. Na druhej strane sa však ponúka využitie endogénnych markerov hypoxie, ktorých detekcia prostredníctvom imunohistochémie je pomerne ľahká, dostupná, reprodukovateľná a použiteľná nielen prospektívne, ale aj retrospektívne na archivovaných vzorkách tkanív. Patrí medzi ne napr. karbonická anhydráza IX (CA IX), ktorá v súčasnosti predstavuje jeden z prominentných indikátorov chronickej hypoxie v nádoroch. Hypoxiou- indukované proteíny (vrátane CA IX) sú zároveň aj potenciálnymi terčami protinádorovej terapie a ich praktické využitie je predmetom intenzívneho výskumu.

Kľúčové slová:
hypoxia –  nádorové mikroprostredie –  hypoxiou- indukovaný faktor –  rezistencia –  karbonická anhydráza IX

Úvod

Hypoxia ako súčasť nádorového mikroprostredia a charakteristika pevných nádorov bola po prvýkrát popísaná pred viac ako 60 rokmi. Pomerne rýchlo bolo zrejmé, že bude predstavovať vážny klinický problém spojený s neúčinnou terapiou. Hoci sa za posledné obdobie podarilo prostredníctvom mnohých klinických a experimentálnych štúdií prispieť k pochopeniu hypoxie a jej vplyvu na bunkovej/ molekulárnej úrovni, cielená terapia hypoxických nádorov zostáva naďalej otvorená.

Termín hypoxia používame na označenie situácie s nedostatočnou hladinou kyslíka, ktorá nastáva nielen v nádoroch, ale aj v zdravých tkanivách a v ranách. Naproti tomu normálna hladina kyslíka v tkanivách je označovaná ako tkanivová normoxia, resp. physioxia a jej hladina je medzi tkanivami značne variabilná. Kým v prípade obličky bola dokázaná hladina kyslíka na úrovni 9,5 ± 2,6 % O2, tak v prípade mozgu je to hodnota 4,4 ± 0,3 % O2 [1].

Hypoxia rôzneho stupňa je charakteristická pre väčšinu pevných nádorov. Prispieva k nej mnoho rôznych faktorov vrátane rýchleho rastu nádorovej masy a jej nedostatočnej vaskularizácie. Je známe, že aj v rámci konkrétneho nádora je situácia veľmi heterogénna, a tak odlišujeme miesta s miernou hypoxiou (≤ 2 % O2) od miest so striktnou hypoxiou (< 0,1 % O2). Pritom pre vyjadrenie hladiny koncentrácie kyslíka sa najčastejšie v medicíne používa buď milimeter ortuťového stĺpca (1 mmHg = 0,13 % O2 133,322 Pa) alebo percento (1 % O2 = 7,6 mmHg, 1 013 kPa) [1]. Okrem toho dochádza v tkanive často aj k striedaniu fázy hypoxie s fázou reoxygenácie.

K vzniku hypoxie dochádza v dôsledku proliferácie nádorových buniek, ktoré sa dostanú do vzdialenosti prekračujúcej difúznu kapacitu kyslíka z najbližšej cievy (100– 150 µm) a sú nedostatočne zásobované kyslíkom a nutričnými látkami. Okrem toho cievny systém nádorového tkaniva je veľmi nedokonalý, vytvára množstvo slepých zakončení, obštrukcií a nefunkčných arterio- venóznych prepojení, čím prispieva k narastajúcej absencii kyslíka a živín v tkanive ako aj k vytváraniu nádorového mikrosprostredia s nižším pH [2]. Dlhodobá existencia hypoxie v nádorovom tkanive má za následok odumieranie buniek a vznik nekrotických oblastí obklopených prežívajúcimi adaptabilnými bunkami.

Adaptácia buniek na hypoxiu

Hypoxia predstavuje nepriaznivý faktor, ktorý v mnohých situáciach môže viesť k bunkovej smrti. Avšak práve v dôsledku adaptácie na hypoxiu dokážu mnohé bunky prežiť aj spomínané nepriaznivé podmienky. V procese adaptácie na hypoxiu sa spúšťa kaskáda rôznych zmien v génovej expresii a metabolizme s cieľom eliminovať stres vyvolaný hypoxiou a umožniť prežívanie nádorových buniek (obr. 1A). Výsledkom toho je tzv. tolerancia hypoxie, ktorá výrazne prispieva k rozvoju karcinogenézy a k rezistencii na rádioterapiu a chemoterapiu [3]. Jedným z prvých adaptačných mechanizmov na hypoxiu je inhibícia bunkovej smrti. Okrem toho dochádza k indukcii angiogenézy s cieľom zvýšiť okysličenie nádorových buniek. Hypoxické nádorové bunky nadobúdajú tzv. onkogénny metabolizmus a podliehajú s vyššou frekvenciou mutáciám. Významný je aj vplyv hypoxie na schopnosť buniek invadovať a metastázovať. Hypoxia tak vytvára selekčný tlak v prospech klonálnej expanzie nádorových buniek s agresívnejším fenotypom [4].

<i>Obr. 1A. Molekulárne mechanizmy vedúce k hypoxickej tolerancii.</i> <i>1B. Regulácia stabilizácie a transaktivácie transkripčného faktora HIF-1 v závislosti od kyslíka.</i> V normoxických podmienkach dochádza k hydroxylácii podjednotky HIF-1α prostredníctvom prolyl hydroxyláz (PHD) a asparaginyl hydroxyláz (FIH). Hydroxylované prolíny sú rozpoznávané nádorovým supresorovým proteínom von Hippel-Lindau (VHL). Po ubikvitinácii je podjednotka HIF-1α degradovaná v proteazóme. V hypoxických podmienkach nedochádza k hydroxylácii HIF-1α a následne ani k VHL-sprostredkovanej degradácii, čoho výsledkom je stabilizácia a dimerizácia s podjednotkou HIF-1β. Po translokácii do jadra a rozpoznaní hypoxického-responzívneho elementu (HRE) je aktivovaná transkripcia hypoxiou regulovaných génov napr. karbonickej anhydrázy 9 (<i>CA9</i>). <i>1C. Rezistencia hypoxických nádorov voči terapii a jej klinický význam.</i>
&lt;i&gt;Obr. 1A. Molekulárne mechanizmy vedúce k hypoxickej tolerancii.&lt;/i&gt;
&lt;i&gt;1B. Regulácia stabilizácie a transaktivácie transkripčného faktora HIF-1 v závislosti od kyslíka.&lt;/i&gt; V normoxických podmienkach dochádza k hydroxylácii podjednotky HIF-1α prostredníctvom prolyl hydroxyláz (PHD) a asparaginyl hydroxyláz (FIH). Hydroxylované prolíny sú rozpoznávané nádorovým supresorovým proteínom von Hippel-Lindau (VHL). Po ubikvitinácii je podjednotka HIF-1α degradovaná v proteazóme. V hypoxických podmienkach nedochádza k hydroxylácii HIF-1α a následne ani k VHL-sprostredkovanej degradácii, čoho výsledkom je stabilizácia a dimerizácia s podjednotkou HIF-1β. Po translokácii do jadra a rozpoznaní hypoxického-responzívneho elementu (HRE) je aktivovaná transkripcia hypoxiou regulovaných génov napr. karbonickej anhydrázy 9 (&lt;i&gt;CA9&lt;/i&gt;).
&lt;i&gt;1C. Rezistencia hypoxických nádorov voči terapii a jej klinický význam.&lt;/i&gt;

Signálna dráha indukovaná hypoxiou a hypoxiou-idukovaný faktor

Kľúčovú pozíciu pri reakcii na zníženú dostupnosť kyslíka na molekulovej úrovni má hypoxiou-indukovaný faktor (HIF), ktorý spúšťa expresiu cieľových génov nevyhnutných pre prežitie buniek [5]. HIF je transkripčný faktor regulujúci expresiu génov zodpovedných za reakciu bunky na hypoxické prostredie. Je to heterodimér tvorený z dvoch podjednotiek, z konštitutívne exprimovanej β-podjednotky (označovanej HIF- β, resp. ARNT) a z regulovateľnej α-podjednotky, ktorej stabilita a transkripčná aktivita závisí od koncentrácie kyslíka. Podjednotka α sa nachádza v troch izoformách, HIF- 1α, HIF- 2α (inak známa ako EPAS- endoteliálny proteín s PAS doménou) a HIF- 3α [6].

Regulácia stability a aktivity transkripčného faktora HIF- 1

Transkripcia génu HIF- 1α je závislá predovšetkým na aktivite transkripčného faktora SP1. Avšak v promótorovej oblasti génu HIF- sú prítomné väzbové miesta aj pre iné transkripčné faktory, ako napr. AP- 1, NF- 1, NF-κB. V podmienkach hypoxie je účinnosť translácie proteínu HIF- 1α zaručená prostredníctvom existencie IRES (internal ribosome entry site) sekvencie v 5’- neprekladanej oblasti [7].

Prolyl- a asparaginylhydroxylácia a ubikvitinácia

K degradácii podjednotky HIF- 1α v normoxických podmienkach dochádza prostredníctvom degradačnej domény závislej od kyslíka (oxygen- dependent degradation domain –  ODD) [8]. V ODD doméne sú dva prolylové zvyšky (Pro564 a Pro402), ktoré sú hydroxylované enzýmami s prolyl hydroxylázovou doménou (prolyl hydroxylase domain –  PHD), pričom k spomínanej reakcii dochádza v závislosti od kyslíka a iónov železa (Fe2+) [9,10]. Doposiaľ boli identifikované tri prolyl hydroxylázy závislé na 2- oxoglutaráte (PHD1, PHD2 a PHD3), ktorých aktivita je v podmienkach buď hypoxie alebo pri nahradení Fe2+ alebo 2- oxoglutarátu potlačená, čo vedie k stabilizácii HIF-1 α podjednotky [11]. Štúdie založené na RNA interferencii odhalili, že vo väčšine buniek je pre aktiváciu proteínu HIF postačujúce potlačenie aktivity PHD2 [12,13]. Za normálnych okolností je vo väčšine buniek dominantný enzým PHD2, avšak v podmienkach so zvýšenou expresiou PHD1 (napr. v odpovedi na stimuláciu hormónmi) alebo PHD3 (napr. pri predĺženom trvaní hypoxie) dochádza k posilneniu ich funkcie v rámci hydroxylácie podjednotky HIF- 1α [13].

Pri degradácii podjednotky HIF- 1α sú hydroxylované prolíny rozpoznávané nádorovým supresorovým proteínom von Hippel- Lindau (VHL), ktorý sa spolu s elongínom B a C, Cullinom 2 a Rbx podieľa na vytvorení funkčnej E3 ubikvitín ligázy (pVHL-elonginB- elenginC- Cul2- Rbx) ubikvitinujúcej podjednotku HIF- 1α pred následnou degradáciou v proteazóme (obr. 1B) [14]. K degradácii podjednotky HIF- 1α v normoxii dochádza za menej ako 5 minút. Proteín HIF- 1α má okrem bHLH/ PAS a ODD domény aj transaktivačnú doménu (N- TAD t.j. N-terminálnu resp. C- TAD t.j. C-terminálnu) [15]. V rámci C- TAD domény dochádza k hydroxylácii asparagínových zvyškov (Asn803) prostredníctvom asparaginyl hydroxylázy závislej na 2- oxoglutaráte (inak označovanej ako FIH –  faktor inhibujúci HIF). Spomínaná hydroxylácia bráni naviazaniu sa ko- aktivátorov CBP (CREB- väzbový proteín) a p300, čím dochádza k inhibícii transaktivácie HIF- 1α v normoxických podmienkach [7,16].

V hypoxii sú enzýmy PHD aj FIH v dôsledku nízkej hladiny O2 inaktivované, čo má za následok stabilizáciu podjednotky HIF- 1α, jej translokáciu do jadra a dimerizáciu s podjednotkou HIF- 1β. Takto vytvorený komplex HIF- 1 sa spolu s ko- aktivátormi (CBP/ p300, Ref- 1, SRC- 1, TIF2) viaže na hypoxické responzívne elementy (HRE- hypoxia response element; 5’- G/ ACGTG- 3’) nachádzajúce sa v promótorových, resp. enhancerových oblastiach jednotlivých hypoxiou- regulovaných cieľových génov a spúšťa ich transkripciu (obr. 1B). Najznámejšie cieľové gény sú zahrnuté vo viacerých významných procesoch, akými sú glykolýza, erytropoéza a angiogenéza [17,18].

Fosforylácia

Fosforylácia podjednotky HIF- 1α je realizovaná prostredníctvom p42/ p44 a p38 kináz. Vzhľadom na osem serínových zvyškov v HIF- 1α, ktoré môžu byť fosforylované prostredníctvom mitogénom- aktivovanej proteín kinázy (mitogen-activated protein kinases –  MAPK), platí, že aktivovaná MAPK signálna dráha vedie k zvýšenej transkripčnej aktivite komplexu HIF- 1 [19]. Transaktivačná funkcia komplexu HIF- 1 je zvýšená nielen v dôsledku preferenčne zvýšenej väzby HIF- β k fosforylovanej α- podjednotke, ale aj v dôsledku toho, že fosforylácia Thr796 bráni hydroxylácii Asn803 prostredníctvom proteínu FIH [20,21].

Okrem horeuvedených modifikácií bola vo vzťahu k regulácii stability a aktivity proteínu HIF- 1α popísaná aj lyzínacetylácia, nitrozylácia a sumoylácia [22– 24].

Ostatné izoformy α- podjednotky proteínu HIF

Vzhľadom na podobnú štruktúru a aminokyselinovú sekvenciu medzi podjednotkami HIF- 1α a HIF- 2α je zrejmé, že budú mať aj podobné mechanizmy regulácie. Okrem toho však existujú aj rozdiely, napr. v distribúcii jednotlivých izoforiem. Kým HIF- 1α mRNA je exprimovaná vo väčšine ľudských tkanív, tak expresia HIF- 2α je obmedzená a skôr špecifická pre endotelové bunky [25].

Podjednotka HIF- 3α je v hypoxických podmienkach schopná rovnako ako ostatné dve izoformy dimerizácie s β- podjednotkou a následnej transaktivácie cieľových génov [26]. Doposiaľ bolo identifikovaných niekoľko skrátených variantov HIF- 3α vznikajúcich v dôsledku zostrihu (splicingu). Z nich najviac charakterizovaný je tzv. inhibičný proteín s PAS doménou (IPAS), ktorý je skrátený o časť nachádzajúcu sa za PAS B doménou. Vzhľadom na chýbajúce domény (ODD a TAD) nie je IPAS schopný transaktivácie cieľových génov. Jeho expresia však môže byť v hypoxických podmienkach zvýšená prostredníctvom HIF- 1α transaktivácie. Naproti tomu bolo pozorované, že IPAS má dominantne negatívny vplyv na HIF- 1α, čo naznačuje existenciu negatívnej spätnej väzby [27].

Hypoxiou-indukované cieľové gény a ich úloha v bunke

S ohľadom na in vivo rozdiely medzi jednotlivými bunkami a tkanivami, ktoré sa na zmeny v dostupnosti kyslíka musia nevyhnutne adaptovať, nie je vôbec prekvapivé, že dôsledky vyvolané aktiváciou transkripčného komplexu HIF sa od bunky k bunke líšia. Jednou z foriem adaptácie nádorových buniek na hypoxiu je pomerne rýchle zníženie syntézy proteínov (až na úroveň 30– 40 % normálnej hladiny), nakoľko proteosyntéza predstavuje energeticky náročný proces, ktorý je pre bunku v takto obmedzených podmienkach neudržateľný (obr. 1A) [3]. Na druhej strane napriek zníženej hladine proteosyntézy existuje skupina proteínov, ktorých hladina je v podmienkach hypoxie indukovaná.

V dnešnej dobe je známa viac ako stovka cieľových génov, ktoré sú rozpoznávané transkripčným komplexom HIF a ktoré sa podieľajú na erytropoéze, angiogenéze a metabolizme glukózy [28,29]. Najstarší a najviac preskúmaný mechanizmus regulácie transkripcie v podmienkach hypoxie je známy pre hormón erytropoetín (EPO) produkovaný prevažne v obličke a nevyhnutný pre erytropoézu [30]. V podmienkach s nízkou hladinou kyslíka je indukovaná expresia EPO, ktorá vedie k zvýšenej tvorbe červených krviniek v snahe zachovať homeostázu dostatočným prísunom kyslíka do tkanív. Hypoxia indukuje aj expresiu vaskulárneho endotelového rastového faktora (VEGF) a jeho receptora (VEGFR), ktoré sa zúčastňujú na angiogenéze a stimulujú proliferáciu endotelových buniek. Okrem toho je cirkulácia krvi regulovaná cievnym tlakom prostredníctvom produkcie: NO (NO syntázou –  iNOS), CO (hém oxygenázou 1 –  HO- 1), endotelínu (ET- 1), adrenomedulínu (ADM) a α1B-adrenergného receptora. V hypoxii dochádza aj k zvýšenej expresii proteínov, akými sú matrixová metaloproteináza (MMP), inhibítor plazminogénového aktivátora (PAI) a angiopoetín [28].

Expresia génov erytropoézy a angiogenézy je zahrnutá v celkovej a systémovej odpovedi organizmu na hypoxiu. Okrem toho však prebiehajú aj reakcie na úrovni bunky. Jednou z nich je prepnutie bunky z aeróbneho na anaeróbny metabolizmus. Spomínaný efekt, ktorý zahŕňa zníženie oxidačnej fosforylácie a zvýšenie anaeróbnej glykolýzy, bol po prvýkrát popísaný Pasteurom. V dôsledku anaeróbnej glykolýzy je však hladina vytvoreného ATP nedostatočná. Z dôvodu zvýšeného príjmu glukózy do bunky je indukovaná expresia glukózových transportérov (GLUT1 a GLUT3). Okrem toho však dochádza aj k indukcii a zvýšenej aktivite glykolytických enzýmov (napr. hexokináza 1/ 2 –  HK1/ 2, laktát dehydrogenáza A –  LDHA, pyruvát dehydrogenáza kináza 1 –  PDK1). Ich expresia je regulovaná práve prostredníctvom komplexu HIF- 1 a v procese adaptácie bunky na hypoxické prostredie [31,32].

V hypoxii pozorujeme okrem zmien v metabolizme buniek aj iné javy. Jedným z nich je acidóza, ktorá v nádorových bunkách spôsobuje kyslejšie extracelulárne pH oproti extracelulárnemu pH v zdravom tkanive. Naproti tomu hodnoty intracelulárneho pH sú medzi nádorovými a zdravými bunkami porovnateľné. Stabilné intracelulárne pH je pre každú bunku nevyhnutné. K jeho udržiavaniu prispieva expresia viacerých membránových transportérov a výmenníkov, medzi ktoré patria napr. monokarboxylátový transportér (MCT4) alebo sodíkovo- vodíkový výmenník (NHE1). Do skupiny hypoxiou- indukovaných génov, ktorých produkty sa podieľajú na regulácii pH, patrí aj membránová karbonická anhydráza IX (CA IX). V podmienkach hypoxie dochádza okrem doposiaľ spomínaných génov aj k indukcii expresie génov zodpovedných za bunkovú proliferáciu, adhéziu, invazívnosť a i. [33].

Nádorová hypoxia a jej klinický význam

Na základe mnohých klinických štúdií je zrejmé, že hypoxické nádory sú rezistentnejšie voči dostupnej protinádorovej terapii, vrátane rádio-  a chemoterapie [34]. K chemorezistencii dochádza nielen na základe faktu, že aplikované chemoterapeutiká sú vzhľadom k nedostatočnej cievnej sieti neefektívne doručované do hypoxických oblastí nádorov, ale aj kvôli zníženej proliferačnej aktivite hypoxických buniek a zníženej apoptóze (v dôsledku mutácie p53) (obr. 1C) [35]. K chemorezistencii prispieva tiež hypoxiou- indukovaná expresia génu mnohopočetnej liekovej rezistenice (MDR1), v promótorovej oblasti ktorého sa nachádza funkčné HRE miesto a produktom ktorého je P- glykoproteín [36]. Takto rezistentné bunky nie sú prostredníctvom konvenčnej chemoterapie efektívne eliminované.

Nádorová hypoxia predstavuje vážny problém aj z hľadiska rádioterapie. Pacienti s hypoxickými nádormi dosahujú oveľa horšie liečebné výsledky s celkovo kratšou dobou prežívania. Fenomén rádiorezistencie bol po prvýkrát popísaný v roku 1955 Thomlinsonom a Grayom, ktorí odhalili prítomnosť hypoxických nádorových buniek v malígnych nádoroch [37]. Rádiosenzitivita tkanív je založená na fakte, že dobre okysličené tkanivá sú senzitívnejšie na letálny efekt ionizujúceho žiarenia nakoľko molekuly kyslíka reagujú s vznikajúcimi voľnými radikálmi v miestach poškodenia DNA a fixujú ich, v dôsledku čoho dochádza k bunkovej smrti. Výsledkom nedostatočnej hladiny kyslíka je až trojnásobne vyššia rezistencia hypoxických buniek voči rádioterapii v porovnaní so situáciou v normoxii.

Súčasné chemo-  a rádioterapeutické prístupy sú v dôsledku hypoxiou-indukovanej rezistencie schopné dostatočne a účinne eliminovať len senzitívne nádorové bunky. Rezistentné bunky sú ochránené a následne poskytujú základ pre relaps ochorenia a vznik nových nádorov a metastáz, ktoré sú malígnejšie, invazívnejšie a rezistentnejšie, čím sa prognóza pacienta výrazne zhoršuje. Preto sa do pozornosti dostávajú nové stratégie, ktoré by prispeli k riešeniu spomínaného problému. V prípade rádioterapie sa využíva zvýšenie oxygenácie tumoru (prostredníctvom hyperbarickej oxygenácie, transfúzie a aplikácie erytropoetínu) a frakcionovaná rádioterapia. Prínosom frakcionácie je dosiahnutie vyváženého účinku rádioterapie, t.j. maximálny biologický účinok na nádorové bunky a súčasne minimálny účinok na zdravé tkanivo [38]. V prípade chemoterapie sa ako riešením javí využitie metronomickej chemoterapie, ktorá je založená na dlhodobom podávaní nízkych dávok chemoterapie. Na rozdiel od konvenčnej chemoterapie je účinnejšia a dobre tolerovaná [39].

V súvislosti s rezistenciou na terapiu sa v súčasnej dobe do pozornosti dostáva aj problematika nádorových kmeňových buniek, ktoré sa podieľajú na raste a udržiavaní nádorov a prispievajú k rekurencii nádorového ochorenia po terapii [40]. Hypoxia prispieva k dediferenciácii nádorových buniek ako aj k navodeniu a udržiavaniu kmeňového fenotypu. Hoci mechanizmy a signálne dráhy ovplyvňujúce hypoxiu a nádorové kmeňové bunky nie sú úplne objasnené, výsledky výskumu poukazujú na interakciu medzi transkripčným faktorom HIF- 1α a trankripčnými faktormi zodpovednými za fenotyp kmeňových buniek, napr. Sox2, Klf4, c- Myc, Oct4 a Nanog ako aj signálnymi dráhami napr. Notch, Wnt alebo Smad/ TGFβ, ktoré sú zodpovedné za proliferáciu a diferenciáciu buniek [41– 43].

Okrem spomínanej rezistencie voči konvenčným protinádorovým stratégiám je existencia hypoxie spojená aj s horšou prognózou z pohľadu chirurgického riešenia ochorenia. Hlavnou príčinou je predovšetkým fakt, že hypoxické nádory majú predispozíciu k získaniu metastatického fenotypu a invazívnosti, a pre nádorové bunky je charakteristická zvýšená frekvencia mutácií [35].

Stratégie stanovenia nádorovej hypoxie

Nádorová hypoxia predstavuje relevantný klinický fenomén, ktorý ovplyvňuje terapiu a progresiu nádorového ochorenia ako aj celkové prežívanie pacientov. Detekcia hypoxických oblastí v nádoroch je preto kritická z pohľadu stratifikácie pacientov pre optimálnu terapiu ako aj z pohľadu prognózy ochorenia.

Jeden z najstarších spôsobov, ktorý bol po prvýkrát popísaný v roku 1986 Weissom a Fleckensteinom, predstavuje lokálne použitie polarografickej mikroelektródy v nádorovom tkanive pacienta in vivo. Aplikáciou tohto merania bola potvrdená existencia hypoxického mikroprostredia v nádorovom tkanive (porovnanie hladiny koncentrácie kyslíka v zdravom prsníku –  65 mmHg vs. v prsníkovom karcinóme –  30 mmHg) [44]. Kým na jednej strane je táto metóda vzhľadom na technické vybavenie ľahko realizovateľná, tak na druhej strane má invazívny charakter a jej použitie je limitované vzhľadom k dostupnosti nádorového tkaniva.

Alternatívu k mikroelektróde predstavuje aplikácia pimonidazolu –  nitroimidazolovej zlúčeniny, ktorá je redukovaná v podmienkach hypoxie a ktorá sa selektívne viaže na makromolekuly v hypoxických bunkách. Pimonidazol sa podáva pred odberom biopsie a následne je jeho akumulácia v hypoxických oblastiach tkaniva (pod hladinou koncentrácie kyslíka 10 mmHg) vizualizovaná prostredníctvom špecifických protilátok a imunohistochémie [45]. Tento prístup je prínosný nielen z pohľadu detekcie nádorovej hypoxie prostredníctvom tzv. exogénneho markera, ale aj z dôvodu senzitizácie hypoxických buniek, ktoré sú následne citlivejšie voči rádioterapii [46].

Za posledné dve desaťročia sa do popredia dostávajú nové zobrazovacie stratégie, ktoré ponúkajú širší pohľad vzhľadom na lokalizáciu a dynamiku nádorovej hypoxie. Takýto neinvazívny prístup stanovenia hypoxie v nádorovom tkanive ponúka napr. pozitrónová emisná tomografia (PET). Táto stratégia je veľmi vhodná nie len preto, že ponúka celkový pohľad na nádorové tkanivo, ale aj z dôvodu možnosti opakovaného merania, ako aj širokej aplikovateľnosti pre všetky typy nádorov. Pre úspešnosť a relevantnosť zobrazovania je však veľmi dôležité, aby mal použitý rádioaktívne-značený nosič optimálne farmakokinetické parametre a aby bol minimalizovaný signál z pozadia. Zjednodušene sa PET nosiče dajú rozdeliť do dvoch skupín vzhľadom na to, či majú alebo nemajú nitroimidazolový charaktrer.

Medzi vybraných zástupcov nitroimidazolovej skupiny patria [18F]- fluoromi-sonidazol ([18F]- FMISO), [18F]- fluoroazomycín arabinozid ([18F]- FAZA) a [18F]- fluoroerytronitroimidazol ([18F]- FETNIM). Mechanizmus ich fungovania spočíva v redukcii NO2 skupiny v hypoxických bunkách a v naviazaní sa vytvorených aniónov na makromolekuly nádorových buniek. V nekrotických oblastiach nedochádza k redukcii, v dôsledku čoho nosič difunduje von z bunky [47]. K zástupcom druhej skupiny nosičov patria [18F]- fluorodeoxyglukóza ([18F]- FDG; s pomerne širokým klinickým využívaním) a Cu- ATSM (komplex medi-  a dithiosemikarbazónu, pri ktorom dochádza k redukcii Cu2+ na Cu1+). Prvý zavedený nosič, [18F]- FMISO, predstavuje tzv. zlatý štandard a bol najviac používaný na identifikáciu hypoxických oblastí v nádorových tkanivách pacientov. V porovnaní s novoobjavenými nosičmi však vykazuje suboptimálne vlastnosti. Do popredia sa preto dostáva Cu- ATSM nosič, ktorý je účinnejšie vychytávaný bunkami a poskytuje lepšie zobrazovacie možnosti [48]. Navyše kým v prípade nitroimidazolových nosičov značených s izotopom [18F] je polčas rozpadu necelé 2 hod, tak vzhľadom na skutočnosť, že nosič Cu- ATSM môže byť značený aj s izotopmi s dlhším polčasom rozpadu (12,7 hod pri [64Cu] alebo 61,9 hod pri [67Cu]), je jeho použitie vhodné tiež na predĺžené merania [49].

Alternatívou k PET je magnetická rezonancia (MRI), predovšetkým BOLD MRI (blood oxygen level dependance MRI). Princíp tejto metódy spočíva v existencii deoxyhemoglobínu v hypoxických podmienkach, ktorý vytvára lokálny magnetický gradient a dokáže interagovať v externom magnetickom poli [50]. Nevýhoda spočíva v negatívnom vplyve distribúcie krvi ako aj celkového objemu krvi v organizme na získané údaje. Metóda ako taká neposkytuje absolútne hodnoty koncentrácie kyslíka v tkanive, ale zachytáva len zmeny v oxygenácii krvi. Okrem BOLD MRI sa najnovšie objavuje aj DCE MRI (dynamic contrast- enhanced MRI) stratégia založená na nízkomolekulovom gadolíniovom nosiči.

Doposiaľ spomínané prístupy zamerané na detekciu nádorovej hypoxie prinášajú množstvo výhod, ale aj mnohé nevýhody. Okrem toho, že niektoré z nich majú invazívny charakter, sú pomerne dosť zaťažené nádorovou heterogenitou a dajú sa uplatniť len prospektívne. Naproti tomu detekcia tzv. endogénneho bunkového markera charakteristického pre hypoxiu umožňuje jeho aplikáciu aj v retrospektívnych štúdiách.

Prostredníctvom špecifickej protilátky je možné prítomnosť markera stanoviť imunohistochemicky, rutinným spôsobom, prospektívne aj retrospektívne na archivovaných vzorkách. Na základe získaných výsledkov je možné konfrontovať expresiu endogénneho hypoxického markera s histopatologickými parametrami, progresiou a rekurenciou ochorenia, výsledkom liečby a pod. Okrem možnosti detekcie samotného realizátora bunkovej odpovede na hypoxiu –  proteínu HIF- 1, ponúka sa aj možnosť detekcie jeho cieľových génov (v podobe proteínov), ako napr. GLUT1 a VEGF. Na základe mnohých doposiaľ publikovaných štúdií sa za najrelevantnejší marker nádorovej hypoxie označuje proteín CA IX.

Karbonická anhydráza IX

Karbonická anhydráza IX (CA IX) patrí do rodiny karbonických anhydráz –  zinok-viažúcich metaloenzýmov, ktoré katalyzujú reverzibilnú hydratáciu oxidu uhličitého na bikarbonátový ión a protón a prostredníctvom tejto aktivity sa zúčastňujú na rôznorodých biologických procesoch.

Prvotné informácie týkajúce sa identifikácie, charakterizácie a distribúcie CA IX boli získané prostredníctvom špecifickej monoklonovej protilátky M75 [51– 53]. Na základe imunohistochemických analýz ľudských tkanív je potvrdená expresia proteínu CA IX v prirodzených podmienkach predovšetkým v tkanivách tráviaceho traktu, hlavne v bunkách sliznice žalúdka [54]. Proteín CA IX sa tiež nachádza v epiteli tenkého čreva a jeho expresia klesá smerom ku konečníku. Na druhej strane v porovnaní s obmedzenou expresiou CA IX v normálnych tkanivách je k dnešnému dňu identifikované a popísané celé spektrum najrozličnejších typov nádorových tkanív derivovaných z obličiek, pažeráka, hrubého čreva, pankreasu, pečene, pľúc, maternice, vaječníkov, mozgu, prsníka a štítnej žľazy [55– 67].

Hypoxická regulácia génu CA9 sa uskutočňuje prostredníctvom väzby transkripčného faktora HIF- 1 do oblasti HRE lokalizovanej v pozícii – 10/ – 3 vzhľadom na transkripčný počiatok [68]. V prípade svetlobunkových obličkových nádorov, u ktorých v dôsledku mutácií génu VHL dochádza k stabilizácii proteínu HIF- 1 aj v normoxických podmienkach, pozorujeme vysokú hladinu CA IX a tzv. difúzny profil jej expresie v tkanive [69]. Na druhej strane v prípade nádorov s funkčným proteínom VHL je expresia proteínu CA IX viazaná do perinekrotických oblastí a vykazuje tzv. fokálny profil [68].

CA IX predstavuje vysoko  aktívny transmembránový enzým, ktorého hlavná funkcia spočíva v ochrane hypoxických nádorových buniek pred intracelulárnou acidózou [70]. V kooperácii s bikarbonátovými transportérmi umožňuje efektívnejší prenos bikarbonátových iónov do bunky, čím neutralizuje vnútrobunkové pH. Navyše akumulácia protónov vo vonkajšom prostredí vedie k acidifikácii nádorového mikroprostredia. Okrem toho proteín CA IX predstavuje aktívny komponent bunkového migračného aparátu, v ktorom sa podieľa na regulácii bunkovej adhézie ako aj pH regulácie na okraji migrujúcich buniek [71]. Vzhľadom na spomínané skutočnosti môžeme konštatovať, že proteín CA IX zohráva kľúčovú úlohu pri vzniku proinvazívneho nádorového mikroprostredia a súčasne predstavuje relevantnú molekulu metastatickej kaskády.

CA IX –  marker nádorovej hypoxie

Na základe mnohých štúdií bolo potvrdené, že expresia CA IX stanovená prostredníctvom imunohistochémie, alebo PCR- amplifikácie je úzko spojená s agresívnejším fenotypom a so zlou prognózou nádorového ochorenia, s mnohými histopatologickými parametrami, s rezistenciou na terapiu a prežívaním pacientov. Okrem toho vo vzťahu k iným metódam detekcie hypoxie v nádorovom tkanive bola dokázaná korelácia medzi CA IX a meraniami s mikroelektródou, resp. medzi CA IX a exogénnym markerom hypoxie –  pimonidazolom [72– 75]. K detekcii CA IX dochádza v relatívne rozsiahlych perinekrotických oblastiach, ktoré sú tvorené aj mierne hypoxickými a/ alebo reoxygenovanými bunkami. Je teda zrejmé, že v porovnaní s imunohistochemickým značením proteínu HIF- 1 ako aj jeho cieľových génov (VEGF, GLUT1) dochádza k miernym diskrepanciám oproti proteínu CA IX. Vysvetlenie spočíva najmä v rôznej senzitivite analyzovaných proteínov na hladinu kyslíka, v rôznych spôsoboch regulácie expresie hypoxických génov, resp. v rôznej stabilite proteínov (polčas rozpadu CA IX v okysličených bunkách je až 38 hod) [76– 79]. Navyše Olive et al dokázali, že CA IX  exprimujúce bunky z perinekrotických oblastí sú viabilné, klonogénne a rezistentné voči ionizujúcemu žiareniu [73].

S príchodom moderných prístupov založených na multianalýzach bol identifikovaný set hypoxických génov (tzv. hypoxic signature), ktorého súčasťou je aj CA IX a ktorého význam bol potvrdený z pohľadu prognózy ochorenia ako aj predikcie terapie [80– 82].

Vzhľadom na unikátny profil expresie proteínu CA IX v nádorových tkanivách (v porovnaní so zdravými tkanivami) ako aj jeho významnú funkciu vo vzťahu k pH regulácii, adhézii a migrácii nádorových buniek nie je prekvapivé, že patrí k pomerne často študovaným nádorovým biomarkerom. Významná je však nielen pozícia CA IX ako endogénneho markera hypoxie a prognostického indikátora, ale aj potenciál proteínu CA IX slúžiť ako terapeutický terč buď pre špecifické protilátky alebo inhibítory jeho enzymatickej aktivity [83].

Záver

Nádorová hypoxia je klinicky významný fenomén so značným vplyvom na selekciu agresívnych nádorových subpopulácií a progresiu nádorovej choroby. Poznatky získané pri štúdiu tohto javu značne prispeli k pochopeniu príčin rezistencie hypoxických nádorov voči konvenčnej protinádorovej liečbe. Podnietili tiež rozvoj nových, cielených diagnostických a terapeutických stratégií, ktoré pri racionálnom uplatnení v onkologickej praxi môžu podstatne zlepšiť klinický manažment pacientov s rakovinou.

Práca bola podporená Evropským fondem pro regionální rozvoj a státním rozpočtem České republiky OP VaVpI – RECAMO (CZ.1.05/2.1.00/03.0101), projektom MŠMT – NPU I – LO1413, Európskym fondom pre regionálny rozvoj a štátnym rozpočtom Slovenskej republiky (ITMS 26240220087) a Vedeckou grantovou agentúrou Ministerstva školstva SR a Slovenskej akadémie vied VEGA 2/0152/12.

Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.

Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do biomedicínských časopisů.

Obdržané: 27. 3. 2015

Prijaté: 13. 4. 2015

prof. RNDr. Silvia Pastoreková, DrSc.

Oddelenie molekulárnej medicíny

Virologický ústav

Slovenská akadémia vied

Dúbravská cesta 9

845 05 Bratislava

Slovenská republika

e-mail: silvia.pastorekova@savba.sk


Sources

1. Carreau A, El Hafny- Rahbi B, Matejuk A et al. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 2011; 15(6): 1239– 1253. doi: 10.1111/ j.1582- 4934.2011.01258.x.

2. Brown JM. The hypoxic cell: a target for selective cancer therapy –  eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res 1999; 59(23): 5863– 5870.

3. Wouters BG, van den Beucken T, Magagnin MG et al. Targeting hypoxia tolerance in cancer. Drug Resist Updat 2004; 7(1): 25– 40.

4. Brown JM. Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol Med Today 2000; 6(4): 157– 162.

5. Pugh CW, Gleadle J, Maxwell PH. Hypoxia and oxidative stress in breast cancer. Hypoxia signalling pathways. Breast Cancer Res 2001; 3(5): 313– 317.

6. Wang GL, Jiang BH, Rue EA et al. Hypoxia- inducible factor 1 is a basic- helix- loop- helix- PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995; 92(12): 5510– 5514.

7. Lando D, Peet DJ, Whelan DA et al. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 2002; 295(5556): 858– 861.

8. Huang LE, Gu J, Schau M et al. Regulation of hypoxia- inducible factor 1alpha is mediated by an O2- dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 1998; 95(14): 7987– 7992.

9. Ivan M, Kondo K, Yang H et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001; 292(5516): 464– 468.

10. Jaakkola P, Mole DR, Tian YM et al. Targeting of HIF-alpha to the von Hippel- Lindau ubiquitylation complex by O2- regulated prolyl hydroxylation. Science 2001; 292(5516): 468– 472.

11. Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 2004; 5(5): 343– 354.

12. Berra E, Benizri E, Ginouves A et al. HIF prolyl- hydroxylase 2 is the key oxygen sensor setting low steady- state levels of HIF- 1alpha in normoxia. EMBO J 2003; 22(16): 4082– 4090.

13. Appelhoff RJ, Tian YM, Raval RR et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia- inducible factor. J Biol Chem 2004; 279(37): 38458– 38465.

14. Iwai K, Yamanaka K, Kamura T et al. Identification of the von Hippel-lindau tumor- suppressor protein as part of an active E3 ubiquitin ligase complex. Proc Natl Acad Sci USA 1999; 96(22): 12436– 12441.

15. Jiang BH, Zheng JZ, Leung SW et al. Transactivation and inhibitory domains of hypoxia- inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem 1997; 272(31): 19253– 19260.

16. Lando D, Peet DJ, Gorman JJ et al. FIH- 1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia- inducible factor. Genes Dev 2002; 16(12): 1466– 1471.

17. Semenza GL. Hypoxia- inducible factor 1: control of oxygen homeostasis in health and disease. Pediatr Res 2001; 49(5): 614– 617.

18. Wenger RH. Cellular adaptation to hypoxia: O2- sensing protein hydroxylases, hypoxia- inducible transcription factors, and O2- regulated gene expression. FASEB J 2002; 16(10): 1151– 1162.

19. Richard DE, Berra E, Gothié E et al. p42/ p44 mitogen-activated protein kinases phosphorylate hypoxia- inducible factor 1alpha (HIF- 1alpha) and enhance the transcriptional activity of HIF- 1. J Biol Chem 1999; 274(46): 32631– 32637.

20. Suzuki H, Tomida A, Tsuruo T. Dephosphorylated hypoxia- inducible factor 1alpha as a mediator of p53- dependent apoptosis during hypoxia. Oncogene 2001; 20(41): 5779– 5788.

21. Lancaster DE, McNeill LA, McDonough MA et al. Disruption of dimerization and substrate phosphorylation inhibit factor inhibiting hypoxia- inducible factor (FIH) activity. Biochem J 2004; 383(3): 429– 437.

22. Jeong JW, Bae MK, Ahn MY et al. Regulation and destabilization of HIF- 1alpha by ARD1- mediated acetylation. Cell 2002; 111(5): 709– 720.

23. Li F, Sonveaux P, Rabbani ZN et al. Regulation of HIF- 1alpha stability through S- nitrosylation. Mol Cell 2007; 26(1): 63– 74.

24. Cheng J, Kang X, Zhang S et al. SUMO- specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 2007; 131(3): 584– 595.

25. Kewley RJ, Whitelaw ML, Chapman- Smith A. The mammalian basic helix- loop- helix/ PAS family of transcriptional regulators. Int J Biochem Cell Biol 2004; 36(2): 189– 204.

26. Gu YZ, Moran SM, Hogenesch JB et al. Molecular characterization and chromosomal localization of a third alpha- class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 1998; 7(3): 205– 213.

27. Makino Y, Cao R, Svensson K et al. Inhibitory PAS domain protein is a negative regulator of hypoxia- inducible gene expression. Nature 2001; 414(6863): 550– 554.

28. Wenger RH. Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol 2000; 203(8): 1253– 1263.

29. Semenza GL. Angiogenesis in ischemic and neoplastic disorders. Annu Rev Med 2003; 54: 17– 28.

30. Wang GL, Semenza GL. General involvement of hypoxia- inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 1993; 90(9): 4304– 4308.

31. Semenza GL. Surviving ischemia: adaptive responses mediated by hypoxia- inducible factor 1. J Clin Invest 2000; 106(7): 809– 812.

32. Maxwell PH. Hypoxia- inducible factor as a physiological regulator. Exp Physiol 2005; 90(6): 791– 797.

33. Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001; 93(4): 266– 276.

34. Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 1998; 58(7): 1408– 1416.

35. Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 2004; 4(6): 437– 447.

36. Comerford KM, Wallace TJ, Karhausen J et al. Hypoxia- inducible factor- 1- dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 2002; 62(12): 3387– 3394.

37. Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 1955; 9(4): 539– 549.

38. Harada H. How can we overcome tumor hypoxia in radiation therapy? J Radiat Res 2011; 52(5): 545– 556.

39. Scharovsky OG, Mainetti LE, Rozados VR. Metronomic chemotherapy: changing the paradigm that more is better. Curr Oncol 2009; 16(2): 7– 15.

40. Heddleston JM, Li Z, Lathia JD et al. Hypoxia inducible factors in cancer stem cells. Br J Cancer 2010; 102(5): 789– 795. doi: 10.1038/ sj.bjc.6605551.

41. Gustafsson MV, Zheng X, Pereira T et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 2005; 9(5): 617– 628.

42. Li Y, Laterra J. Cancer stem cells: distinct entities or dynamically regulated phenotypes? Cancer Res 2012; 72(3): 576– 580. doi: 10.1158/ 0008- 5472.CAN- 11- 3070.

43. Holcakova J, Nekulova M, Orzol P et al. Mechanisms of drug resistance and cancer stem cells. Klin Onkol 2014; 27 (Suppl 1): S34– S41.

44. Vaupel P, Schlenger K, Knoop C et al. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res 1991; 51(12): 3316– 3322.

45. Varia MA, Calkins- Adams DP, Rinker LH et al. Pimonidazole: a novel hypoxia marker for complementary study of tumor hypoxia and cell proliferation in cervical carcinoma. Gynecol Oncol 1998; 71(2): 270– 277.

46. Janssens GO, Rademakers SE, Terhaard CH et al. Accelerated radiotherapy with carbogen and nicotinamide for laryngeal cancer: results of a phase III randomized trial. J Clin Oncol 2012; 30(15): 1777– 1783. doi: 10.1200/ JCO.2011.35.9315.

47. Lee ST, Scott AM. Hypoxia positron emission tomography imaging with 18f- fluoromisonidazole. Semin Nucl Med 2007; 37(6): 451– 461.

48. Holland JP, Lewis JS, Dehdashti F. Assessing tumor hypoxia by positron emission tomography with Cu- ATSM. Q J Nucl Med Mol Imaging 2009; 53(2): 193– 200.

49. Laforest R, Dehdashti F, Lewis JS et al. Dosimetry of 60/ 61/ 62/ 64Cu- ATSM: a hypoxia imaging agent for PET. Eur J Nucl Med Mol Imaging 2005; 32(7): 764– 770.

50. Ogawa S, Menon RS, Tank DW et al. Functional brain mapping by blood oxygenation level- dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 1993; 64(3): 803– 812.

51. Pastorekova S, Zavadova Z, Kostal M et al. A novel quasi- viral agent, MaTu, is a two-component system. Virology 1992; 187(2): 620– 626.

52. Pastorek J, Pastorekova S, Callebaut I et al. Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix- loop- helix DNA binding segment. Oncogene 1994; 9(10): 2877– 2888.

53. Opavsky R, Pastorekova S, Zelnik V et al. Human MN/ CA9 gene, a novel member of the carbonic anhydrase family: structure and exon to protein domain relationships. Genomics 1996; 33(3): 480– 487.

54. Pastorekova S, Parkkila S, Parkkila AK et al. Carbonic anhydrase IX, MN/ CA IX: analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts. Gastroenterology 1997; 112(2): 398– 408.

55. Liao SY, Aurelio ON, Jan K et al. Identification of the MN/ CA9 protein as a reliable diagnostic biomarker of clear cell carcinoma of the kidney. Cancer Res 1997; 57(14): 2827– 2831.

56. McKiernan JM, Buttyan R, Bander NH et al. Expression of the tumor-associated gene MN: a potential biomarker for human renal cell carcinoma. Cancer Res 1997; 57(12): 2362– 2365.

57. Turner JR, Odze RD, Crum CP et al. MN antigen expression in normal, preneoplastic, and neoplastic esophagus: a clinicopathological study of a new cancer-associated biomarker. Hum Pathol 1997; 28(6): 740– 744.

58. Saarnio J, Parkkila S, Parkkila AK et al. Immunohistochemical study of colorectal tumors for expression of a novel transmembrane carbonic anhydrase, MN/ CA IX, with potential value as a marker of cell proliferation. Am J Pathol 1998; 153(1): 279– 285.

59. Vermylen P, Roufosse C, Burny A et al. Carbonic anhydrase IX antigen differentiates between preneoplastic malignant lesions in non-small cell lung carcinoma. Eur Respir J 1999; 14(4): 806– 811.

60. Kivela AJ, Parkkila S, Saarnio J et al. Expression of transmembrane carbonic anhydrase isoenzymes IX and XII in normal human pancreas and pancreatic tumours. Histochem Cell Biol 2000; 114(3): 197– 204.

61. Ivanov S, Liao SY, Ivanova A et al. Expression of hypoxia- inducible cell- surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 2001; 158(3): 905– 919.

62. Haapasalo JA, Nordfors KM, Hilvo M et al. Expression of carbonic anhydrase IX in astrocytic tumors predicts poor prognosis. Clin Cancer Res 2006; 12(2): 473– 477.

63. Kowalewska M, Radziszewski J, Kulik J et al. Detection of carbonic anhydrase 9- expressing tumor cells in the lymph nodes of vulvar carcinoma patients by RT-PCR. Int J Cancer 2005; 116(6): 957– 962.

64. Niemela AM, Hynninen P, Mecklin JP et al. Carbonic anhydrase IX is highly expressed in hereditary nonpolyposis colorectal cancer. Cancer Epidemiol Biomarkers Prev 2007; 16(9): 1760– 1766.

65. Jarvela S, Parkkila S, Bragge H et al. Carbonic anhydrase IX in oligodendroglial brain tumors. BMC Cancer 2008; 8: 1. doi: 10.1186/ 1471- 2407- 8- 1.

66. Takacova M, Bullova P, Simko V et al. Expression pattern of carbonic anhydrase IX in Medullary thyroid carcinoma supports a role for RET- mediated activation of the HIF pathway. Am J Pathol 2014; 184(4): 953– 965. doi: 10.1016/ j.ajpath.2014.01.002.

67. Rosenberg V, Pastorekova S, Zatovicova M et al. Relation between carbonic anhydrase IX serum level, hypoxia and radiation resistance of head and neck cancers. Klin Onkol 2014; 27(4): 269– 275.

68. Wykoff CC, Beasley NJ, Watson PH et al. Hypoxia- inducible expression of tumor-associated carbonic anhydrases. Cancer Res 2000; 60(24): 7075– 7083.

69. Wiesener MS, Munchenhagen PM, Berger I et al. Constitutive activation of hypoxia- inducible genes related to overexpression of hypoxia- inducible factor- 1alpha in clear cell renal carcinomas. Cancer Res 2001; 61(13): 5215– 5222.

70. Svastova E, Hulikova A, Rafajova M et al. Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett 2004; 577(3): 439– 445.

71. Svastova E, Witarski W, Csaderova L et al. Carbonic anhydrase IX interacts with bicarbonate transporters in lamellipodia and increases cell migration via its catalytic domain. J Biol Chem 2012; 287(5): 3392– 3402. doi: 10.1074/ jbc.M111.286062.

72. Loncaster JA, Harris AL, Davidson SE et al. Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res 2001; 61(17): 6394– 6399.

73. Olive PL, Aquino- Parsons C, MacPhail SH et al. Carbonic anhydrase 9 as an endogenous marker for hypoxic cells in cervical cancer. Cancer Res 2001; 61(24): 8924– 8929.

74. Airley RE, Loncaster J, Raleigh JA et al. GLUT- 1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: relationship to pimonidazole binding. Int J Cancer 2003; 104(1): 85– 91.

75. Iakovlev VV, Pintilie M, Morrison A et al. Effect of distributional heterogeneity on the analysis of tumor hypoxia based on carbonic anhydrase IX. Lab Invest 2007; 87(12): 1206– 1217.

76. Giatromanolaki A, Koukourakis MI, Sivridis E et al. Expression of hypoxia- inducible carbonic anhydrase- 9 relates to angiogenic pathways and independently to poor outcome in non-small cell lung cancer. Cancer Res 2001; 61(21): 7992– 7998.

77. Tomes L, Emberley E, Niu Y et al. Necrosis and hypoxia in invasive breast carcinoma. Breast Cancer Res Treat 2003; 81(1): 61– 69.

78. Rafajova M, Zatovicova M, Kettmann R et al. Induction by hypoxia combined with low glucose or low bicarbonate and high posttranslational stability upon reoxygenation contribute to carbonic anhydrase IX expression in cancer cells. Int J Oncol 2004; 24(4): 995– 1004.

79. Kim SJ, Rabbani ZN, Dewhirst MW et al. Expression of HIF- 1alpha, CA IX, VEGF, and MMP- 9 in surgically resected non-small cell lung cancer. Lung Cancer 2005; 49(3): 325– 335.

80. Winter SC, Buffa FM, Silva P et al. Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. Cancer Res 2007; 67(7): 3441– 3449.

81. Buffa FM, Harris AL, West CM et al. Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br J Cancer 2010; 102(2): 428– 435.

82. Toustrup K, Sorensen BS, Alsner J et al. Hypoxia gene expression signatures as prognostic and predictive markers in head and neck radiotherapy. Semin Radiat Oncol 2012; 22(2): 119– 127. doi: 10.1016/ j.semradonc.2011.12.006.

83. Pastorek J, Pastorekova S. Hypoxia-induced carbonic anhydrase IX as a target for cancer therapy: from biology to clinical use. Semin Cancer Biol 2015; 31: 52– 64. doi: 10.1016/ j.semcancer.2014.08.002.

Labels
Paediatric clinical oncology Surgery Clinical oncology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#