Differences in Spatial Navigation Impairment in Neurodegenerative Dementias
Authors:
J. Cerman 1; J. Laczó 1,2; M. Vyhnálek 1; K. Vlček 3; O. Lerch 1; K. Sheardová 2; J. Hort 1,2
Authors‘ workplace:
Neurologická klinika 2. LF UK a FN v Motole, Praha
1; ICRC, Mezinárodní centrum klinického výzkumu, FN u sv. Anny v Brně
2; Oddělení neurofyziologie paměti, Fyziologický ústav AV ČR, v. v. i., Praha
3
Published in:
Cesk Slov Neurol N 2014; 77/110(4): 449-455
Category:
Original Paper
Overview
Impairment of multiple cognitive domains, including spatial navigation, leads to deterioration of self-sufficiency, a characteristic feature of patients with dementia. Spatial navigation is divided into three basic components that depend on different brain structures – navigation using a close orientation cue (cued), starting position of the body (egocentric) and distant orientation cue (allocentric). The aim of the study was to compare differences in impairment of these spatial navigation components in patients with the most common types of neurodegenerative dementias. In total, 78 patients with neurodegenerative dementias of various etiologies were divided into three groups: Alzheimer’s disease (AD, n = 61), frontotemporal lobar degeneration (FTLD, n = 9) and dementia with Lewy bodies (DLB, n = 8). All subjects were examined in an experimental device called the Blue Velvet Arena that allows researchers to measure performance in each of the three navigation components. The results of the different tests were subsequently compared. In the cued navigation test, the FTLD group performed better than the AD (p = 0.03) and DLB (p = 0.006) groups. Furthermore, in the egocentric navigation test, the DLB group was outperformed by AD (p = 0.012) and FTLD (p = 0.012) groups. Finally, in the allocentric navigation test there were no differences among the groups (p = 0.069). Our results show that spatial navigation impairment may be least pronounced in FTLD patients and most pronounced in DLB patients. There are specific differences in spatial navigation impairment among patients with AD, FTLD and DLB that can be measured with the Blue Velvet Arena device.
Key words:
Alzheimer’s disease – frontotemporal lobar degeneration – dementia with Lewy bodies – spatial orientation
Sources
1. McShane R, Gedling K, Keene J, Fairburn C, Jacoby R, Hope T. Getting lost in dementia: a longitudinal study of a behavioral symptom. Int Psychogeriatr 1998; 10(3): 253– 260.
2. Pai MC, Jacobs WJ. Topographical disorientation in community‑ residing patients with Alzheimer’s disease. Int J Geriatr Psychiatry 2004; 19(3): 250– 255.
3. Hely MA, Reid WG, Halliday GM, McRitchie DA, Leicester J, Joffe R et al. Diffuse Lewy body disease: clinical features in nine cases without coexistent Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1996; 60(5): 531– 538.
4. Vlček K, Levčík D, Nedělská Z, Laczó J, Vyhnálek M, Hort J. Prostorová navigace jako kognitivní doména v diagnostice mírně kognitivní poruchy. Psychiatrie 2011; 15 (Suppl 2): 23– 27.
5. Kalová E, Vlcek K, Jarolímová E, Bures J. Allothetic orientation and sequential ordering of places is impaired in early stages of Alzheimer’s disease: corresponding results in real space tests and computer tests. Behav Brain Res 2005; 159(2): 175– 186.
6. Hort J, Laczó J, Vyhnálek M, Bojar M, Bures J, Vlcek K.Spatial navigation deficit in amnestic mild cognitive impairment. Proc Natl Acad Sci U S A 2007; 104(10): 4042– 4047.
7. Burgess N, Trinkler I, King J, Kennedy A, Cipolotti L. Impaired allocentric spatial memory underlying topographical disorientation. Rev Neurosci 2006; 17(1– 2): 239– 251.
8. Laczó J, Vlcek K, Vyhnálek M, Vajnerová O, Ort M, Holmerová I et al. Spatial navigation testing discriminates two types of amnestic mild cognitive impairment. Behav Brain Res 2009; 202(2): 252– 259. doi: 10.1016/ j.bbr.2009.03.041.
9. Nedelska Z, Andel R, Laczó J, Vlcek K, Horinek D, Lisy J et al. Spatial navigation impairment is proportional to right hippocampal volume. Proc Natl Acad Sci U S A 2012; 109(7): 2590– 2594. doi: 10.1073/ pnas.1121588109.
10. DeIpolyi AR, Rankin KP, Mucke L, Miller BL, Gorno‑ Tempini ML. Spatial cognition and the human navigation network in AD and MCI. Neurology 2007; 69(10): 986– 997.
11. Hartley T, Maguire EA, Spiers HJ, Burgess N. The well‑worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 2003; 37(5): 877– 888.
12. Colloby SJ, Fenwick JD, Williams ED, Paling SM, Lobotesis K, Ballard C et al. A comparison of (99m)Tc‑ HMPAO SPET changes in dementia with Lewy bodies and Alzheimer’s disease using statistical parametric mapping. Eur J Nucl Med Mol Imaging 2002; 29(5): 615– 622.
13. Bellassen V, Iglói K, de Souza LC, Dubois B, Rondi‑ Reig L. Temporal order memory assessed during spatiotemporal navigation as a behavioral cognitive marker for differential Alzheimer’s disease diagnosis. J Neurosci 2012; 32(6): 1942– 1952. doi: 10.1523/ JNEUROSCI.4556‑ 11.2012.
14. Pengas G, Patterson K, Arnold RJ, Bird CM, Burgess N, Nestor PJ. Lost and found: bespoke memory testing for Alzheimer’s disease and semantic dementia. J Alzheimers Dis 2010; 21(4): 1347– 1365.
15. Fazekas F, Kleinert R, Offenbacher H, Payer F, Schmidt R, Kleinert G et al. The morphologic correlate of incidental punctate white matter hyperintensities on MR images. AJNR Am J Neuroradiol 12(5): 915– 921.
16. McKhann G, Drachman D, Folstein M, Katzman R,Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS‑ ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer‘s Disease. Neurology 1984; 34(7): 939– 939.
17. Hort J, Glosová L, Vyhnálek M, Bojar M, Škoda D,Hladíková M. Tau protein a beta amyloid v likvoru u Alzheimerovy choroby. Cesk Slov Neurol N 2007; 70/ 103(1): 30– 36.
18. McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005; 65(12): 1863– 1872.
19. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998; 51(6): 1546– 1554.
20. Tetewsky SJ, Duffy CJ. Visual loss and getting lost in Alzheimer’s disease. Neurology 1999; 52(5): 958– 965.
21. O’Brien HL, Tetewsky SJ, Avery LM, Cushman LA, Makous W, Duffy CJ. Visual mechanisms of spatial disorientation in Alzheimer’s disease. Cereb Cortex 2001; 11(11): 1083– 1092.
22. Bird CM, Chan D, Hartley T, Pijnenburg YA, Rossor MN, Burgess N. Topographical short‑term memory differentiates Alzheimer’s disease from frontotemporal lobar degeneration. Hippocampus 2010; 20(10): 1154– 1169. doi: 10.1002/ hipo.20715.
23. Clinical and neuropathological criteria for frontotemporal dementia. The Lund and Manchester Groups. J Neurol Neurosurg Psychiatry 1994; 57(4): 416– 418.
24. Mori E, Shimomura T, Fujimori M, Hirono N, Imamura T, Hashimoto M et al. Visuoperceptual impairment in dementia with Lewy bodies. Arch Neurol American Medical Association 2000; 57(4): 489.
25. Mosimann UP, Mather G, Wesnes KA, O’Brien JT, Burn DJ, McKeith IG. Visual perception in Parkinson disease dementia and dementia with Lewy bodies. Neurology 2004; 63(11): 2091– 2096.
26. Hu XS, Okamura N, Arai H, Higuchi M, Matsui T, Tashiro M et al. 18F‑ fluorodopa PET study of striatal dopamine uptake in the diagnosis of dementia with Lewy bodies. Neurology 2000; 55(10): 1575– 1577.
27. Andersen RA, Snyder LH, Li CS, Stricanne B. Coordinate transformations in the representation of spatial information. Curr Opin Neurobiol 1993; 3(2): 171– 176.
28. McDaniel WF, Via JD, Smith JS, Wells DL, Fu JJ, Bishop JF et al. Unilateral injury of posterior parietal cortex and spatial learning in hooded rats. Behav Brain Res 1995; 70(2): 165– 179.
29. Maguire EA, Burgess N, Donnett JG, Frackowiak RS,Frith CD, O’Keefe J. Knowing where and getting there: a human navigation network. Science 1998; 280(5365): 921– 924.
30. Kase CS, Troncoso JF, Court JE, Tapia JF, Mohr JP. Global spatial disorientation. Clinico‑ pathologic correlations. J Neurol Sci 1977; 34(2): 267– 278.
31. Ishii K, Hosaka K, Mori T, Mori E. Comparison of FDG‑ PET and IMP‑ SPECT in patients with dementia with Lewy bodies. Ann Nucl Med 2004; 18(5): 447– 451.
32. Du AT, Jahng GH, Hayasaka S, Kramer JH, Rosen HJ,Gorno‑ Tempini ML et al. Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology 2006; 67(7): 1215– 1220.
33. Hoffman JM, Welsh‑ Bohmer KA, Hanson M, Crain B, Hulette C, Earl N et al. FDG PET imaging in patients with pathologically verified dementia. J Nucl Med 2000; 41(11): 1920– 1928.
34. Chow N, Aarsland D, Honarpisheh H, Beyer MK,Somme JH, Elashoff D et al. Comparing hippocampal atrophy in Alzheimer’s dementia and dementia with Lewy bodies. Dement Geriatr Cogn Disord 2012; 34(1): 44– 50. doi: 10.1159/ 000339727.
35. Kantarci K, Ferman TJ, Boeve BF, Weigand SD, Przybelski S, Vemuri P et al. Focal atrophy on MRI and neuropathologic classification of dementia with Lewy bodies. Neurology 2012; 79(6): 553– 560. doi: 10.1212/ WNL.0b013e31826357a5.
36. Lindberg O, Walterfang M, Looi JCL, Malykhin N, Ostberg P, Zandbelt B et al. Hippocampal shape analysis in Alzheimer’s disease and frontotemporal lobar degeneration subtypes. J Alzheimers Dis 2012; 30(2): 355– 365. doi: 10.3233/ JAD‑ 2012‑ 112210.
37. Muñoz‑ Ruiz MÁ, Hartikainen P, Koikkalainen J, Wolz R, Julkunen V, Niskanen E et al. Structural MRI in frontotemporal dementia: comparisons between hippocampal volumetry, tensor‑based morphometry and voxel‑based morphometry. PLoS One 2012; 7(12): e52531. doi: 10.1371/ journal.pone.0052531.
38. Johnson JK, Diehl J, Mendez MF, Neuhaus J, Shapira JS, Forman M et al. Frontotemporal lobar degeneration: demographic characteristics of 353 patients. Arch Neurol 2005; 62(6): 925– 930.
39. Gazova I, Laczó J, Rubinova E, Mokrisova I, Hyncicova E, Andel R et al. Spatial navigation in young versus older adults. Front Aging Neurosci 2013; 5: 94. doi: 10.3389/ fnagi.2013.00094.
40. Gazova I, Vlcek K, Laczó J, Nedelska Z, Hyncicova E, Mokrisova I et al. Spatial navigation – a unique window into physiological and pathological aging. Front Aging Neurosci 2012; 4: 16. doi: 10.3389/ fnagi.2012.00016.
41. Moffat SD, Resnick SM. Effects of age on virtual environment place navigation and allocentric cognitive mapping. Behav Neurosci 2002; 116(5): 851– 859.
42. Iaria G, Palermo L, Committeri G, Barton JJ. Age differences in the formation and use of cognitive maps. Behav Brain Res 2009; 196(2): 187– 191. doi: 10.1016/ j.bbr.2008.08.040.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2014 Issue 4
Most read in this issue
- Sensory Examination
- Genetic Variability in Attention Deficit Hyperactivity Disorder
- Spinal Arteriovenous Malformations – Two Case Reports
- The Value of Repeated Non-confirmatory Multiple Sleep Latency Test (MSLT) for the Diagnosis of Narcolepsy