#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Supernatanty Lactobacillus rhamnosus GG a Lactobacillus crispatus SJ-3C-US snižují expresi genů TSGA10, AURKC, OIP5 a AKAP4 v HeLa buňkách


Authors: Z. Nouri 1;  N. Neyazi 1;  MH. Modarressi 2;  F. Karami 3;  A. Abedin-Do 4;  Z. Taherian-Esfahani 4;  S. Ghafouri-Fard 4;  E. Motevaseli 5
Authors‘ workplace: Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran 1;  Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran 2;  Department of Medical Genetics, Science and Research Branch, Islamic Azad University, Tehran, Iran 3;  Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran 4;  Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran 5
Published in: Klin Onkol 2018; 31(6): 429-433
Category: Original Articles
doi: https://doi.org/10.14735/amko2018429

Overview

Východiska:

Nádorové antigeny testis (CTA) jsou považovány za nádorové bio­markery z důvodu jejich vysoce specifické exprese u lidských malignit a jelikož se téměř nevyskytují v normálních somatických tkáních. Díky své specifické expresi umožňují v posledních letech lépe stanovit včasnou dia­gnózu, prognózu pacientů a léčbu rakoviny. Lactobacily jsou skupina probio­tik s protinádorovými, imunomodulačními a dalšími prospěšnými vlastnostmi. Bylo prokázáno, že tyto bakterie mění expresi několika genů souvisejících s nádory.

Cíl:

Po synchronizaci buněk HeLa pomocí MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-difenyltetrazoliumbromid] jsme pomocí kvantitativní polymerázové řetězové reakci v reálném čase zkoumali vliv supernatantu Lactobacillus rhamnosus GG (LRS) a supernatantu Lactobacillus crispatus SJ-3C-US (LCS) na expresi čtyř CTA (TSGA10, AURKC, OIP5 a AKAP4).

Výsledky:

LRS a LCS inhibovaly růst buněk HeLa po 24 hod, což bylo prokázáno pomocí MTT testu. Exprese všech CTA byly po léčbě oběma supernatanty nižší.

Závěr:

Tato studie prokázala úlohu laktobacilů při snížení exprese genů CTA. Taková změna exprese může být zapojena do protinádorových účinků těchto laktobacilů. Základní mechanismy těchto pozorování nejsou jasné, ale v tomto procesu se mohou účastnit epigenetické modulační mechanismy. K posouzení funkčních rolí laktobacilů v modulaci jiných genů souvisejících s nádory je třeba dalších studií.

Klíčová slova:

probio­tika – nádorové antigeny testis – bio­marker – HeLa buněčná linie

Tato studie byla podpořena Teheránskou univerzitou lékařských věd. Autoři děkují členům Genetické a biotechnologické laboratoře za pomoc při výzkumu.

Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.

Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do bi omedicínských časopisů.

Obdrženo: 19. 8. 2018

Přijato: 30. 9. 2018


Sources

1. Yazarloo F, Shirkoohi R, Mobasheri MB et al. Expres­sion analysis of four testis-specific genes AURKC, OIP5, PIWIL2 and TAF7L in acute myeloid leukemia: a gender-dependent expression pattern. Med Oncol 2013; 30(1): 368. doi: 10.1007/s12032-012-0368-8.

2. Por E, Byun HJ, Lee EJ et al. The cancer/testis antigen CAGE with oncogenic potential stimulates cell proliferation by up-regulating cyclins D1 and E in an AP-1- and E2F-dependent manner. J Biol Chem 2010; 285(19): 14475–14485. doi: 10.1074/jbc.M109.084400.

3. Ghafouri-Fard S, Modarressi MH. Cancer-testis antigens: potential targets for cancer immunotherapy. Arch Iran Med 2009; 12(4): 395–404.

4. Cheng YH, Wong EW, Cheng CY. Cancer/testis (CT) antigens, carcinogenesis and spermatogenesis. Spermatogenesis 2011; 1(3): 209–220. doi: 10.4161/spmg.1.3.17990.

5. Sammut SJ, Feichtinger J, Stuart N et al. A novel cohort of cancer-testis bio­marker genes revealed through meta-analysis of clinical data sets. Oncoscience 2014; 1(5): 349–359.

6. Kulkarni P, Uversky VN. Cancer/testis antigens: “smart” bio­markers for dia­gnosis and prognosis of prostate and other cancers. Int J Mol Sci 2017; 18(4): e740. doi: 10.3390/ijms18040740.

7. Linnekamp JF, Butter R, Spijker R et al. Clinical and bio­logical effects of demethylating agents on solid tumours – a systematic review. Cancer Treat Rev 2017; 54: 10–23. doi: 10.1016/j.ctrv.2017.01.004.

8. Begum PS, Madhavi G, Rajagopal S et el. Probio­tics as functional foods: potential effects on human health and its impact on neurological diseases. Int J Nutr Pharmacol Neurol Dis 2017; 7(2): 23–33.

9. Motevaseli E, Shirzad M, Raoofian R et al. Differences in vaginal Lactobacilli composition of Iranian healthy and bacterial vaginosis infected women: a comparative analysis of their cytotoxic effects with commercial vaginal probio­tics. Iranian Red Crescent Med J 2013; 15(3): 199–206. doi: 10.5812/ircmj.3533.

10. Abedin-Do A, Taherian-Esfahani Z, Ghafouri-Fard S et al. Immunomodulatory effects of Lactobacillus strains: emphasis on their effects on cancer cells. Immunotherapy 2015; 7(12): 1307–1329. doi: 10.2217/imt.15.92.

11. Eslami S, Hadjati J, Motevaseli E et al. Lactobacillus crispatus strain SJ-3C-US induces human dendritic cells (DCs) maturation and confers an anti-inflammatory phenotype to DCs. APMIS 2016; 124(8): 697–710. doi: 10.1111/apm.12556.

12. Nouri Z, Karami F, Neyazi N et al. Dual anti-metastatic and anti-proliferative activity assessment of two probio­tics on HeLa and HT-29 cell lines. Cell J 2016; 18(2): 127–134.

13. Motevaseli E, Shirzad M, Akrami SM et al. Normal and tumour cervical cells respond differently to vaginal Lactobacilli, independent of pH and lactate. J Med Microbio­l 2013; 62(Pt7): 1065–1072. doi: 10.1099/jmm.0.057521-0.

14. Kwok L, Stapleton AE, Stamm WE et al. Adherence of Lactobacillus crispatus to vaginal epithelial cells from women with or without a history of recurrent urinary tract infection. J Urol 2006; 176(5): 2050–2054. doi: 10.1016/j.juro.2006.07.014.

15. Azam R, Ghafouri-Fard S, Tabrizi M et al. Lactobacillus acidophilus and Lactobacillus crispatus culture supernatants downregulate expression of cancer-testis genes in the MDA-MB-231 cell line. Asian Pac J Cancer Prev 2014; 15(10): 4255–4259.

16. Modarressi MH, Cameron J et al. Identification and characterisation of a novel gene, TSGA10, expressed in testis. Gene 2001; 262(1–2): 249–255.

17. Tanaka R, Ono T, Sato S et al. Over-expression of the testis-specific gene TSGA10 in cancers and its immunogenicity. Microbio­l Immunol 2004; 48(4): 339–345.

18. Tsou JH, Chang KC, Chang-Liao PY et al. Aberrantly expressed AURKC enhances the transformation and tumourigenicity of epithelial cells. J Pathol 2011; 225(2): 243–254. doi: 10.1002/path.2934.

19. Chun HK, Chung KS, Kim HC et al. OIP5 is a highly expressed potential therapeutic target for colorectal and gastric cancers. BMB Rep 2010; 43(5): 349–354.

20. Koinuma J, Akiyama H, Fujita M et al. Characterization of an Opa interacting protein 5 involved in lung and esophageal carcinogenesis. Cancer Sci 2012; 103(3): 577–586. doi: 10.1111/j.1349-7006.2011.02167.x.

21. Inaba K. Sperm flagella: comparative and phylogenetic perspectives of protein components. Mol Hum Reprod 2011; 17(8): 524–538. doi: 10.1093/molehr/gar034.

22. Saini S, Jagadish N, Gupta A et al. A novel cancer testis antigen, A-kinase anchor protein 4 (AKAP4) is a potential bio­marker for breast cancer. PLoS One 2013; 8(2): e57095. doi: 10.1371/journal.pone.0057095.

23. Jagadish N, Parashar D, Gupta N et al. A-kinase anchor protein 4 (AKAP4) a promising therapeutic target of colorectal cancer. J Exp Clin Cancer Res 2015; 34: 142. doi: 10.1186/s13046-015-0258-y.

24. Saini S, Agarwal S, Sinha A et al. Gene silencing of A-kinase anchor protein 4 inhibits cervical cancer growth in vitro and in vivo. Cancer Gene Ther 2013 Jul; 20(7): 413–420. doi: 10.1038/cgt.2013.32.

25. Scanlan MJ, Gure AO, Jungbluth AA et al. Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol Rev 2002 Oct; 188: 22–32.

26. Patel S, Goyal A. Evolving roles of probio­tics in cancer prophylaxis and therapy. Probio­tics Antimicrob Proteins 2013; 5(1): 59–67. doi: 10.1007/s12602-012-9124-9.

27. Hu J, Wang C, Ye L et al. Anti-tumour immune effect of oral administration of Lactobacillus plantarum to CT26 tumour-bearing mice. J Biosci 2015; 40(2): 269–279.

28. Seow SW, Cai S, Rahmat JN et al. Lactobacillus rhamnosus GG induces tumor regression in mice bearing or­thotopic bladder tumors. Cancer Sci 2010; 101(3): 751–758. doi: 10.1111/j.1349-7006.2009.01426.x.

29. Zhang L, Li N, Caicedo R et al. Alive and dead Lactobacillus rhamnosus GG decrease tumor necrosis factor-a–induced interleukin-8 production in caco-2 cells. J Nutr 2005; 135(7): 1752–1756. doi: 10.1093/jn/135.7.1752.

30. Vielfort K, Weyler L, Söderholm N et al. Lactobacillus decelerates cervical epithelial cell cycle progres­sion. PLoS One 2013; 8(5): e63592. doi: 10.1371/journal.pone.0063592.

31. Dianatpour M, Mehdipour P, Nayernia K et al. Expres­sion of testis specific genes TSGA10, TEX101 and ODF3 in breast cancer. Iran Red Crescent Med J 2012; 14(11): 722–726. doi: 10.5812/ircmj.3611.

32. Dieterich K, Soto Rifo R, Faure AK et al. Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nat Genet 2007; 39(5): 661–665. doi: 10.1038/ng2027.

33. Tang A, Gao K, Chu L et al. Aurora kinases: novel ther­apy targets in cancers. Oncotarget 2017; 8(14): 23937–23954. doi: 10.18632/oncotarget.14893.

34. Li H, Zhang J, Lee MJ et al. OIP5, a target of miR-15b-5p, regulates hepatocellular carcinoma growth and metastasis through the AKT/mTORC1 and b-catenin signaling pathways. Oncotarget 2017; 8(11): 18129–18144. doi: 10.18632/oncotarget.15185.

35. Kumar V, Jagadish N, Suri A. Role of A-Kinase anchor protein (AKAP4) in growth and survival of ovarian cancer cells. Oncotarget 2017; 8(32): 53124–53136. doi: 10.18632/oncotarget.18163.

36. Han J, Gao W, Su D et al. Silencing of A-Kinase anchor protein 4 (AKAP4) inhibits proliferation and progression of thyroid cancer. Oncol Res 2017; 25(6): 873–878. doi: 10.3727/096504016X14783701102564.

37. Mesic A, Rogar M, Hudler P et al. Association of the AURKA and AURKC gene polymorphisms with an increased risk of gastric cancer. IUBMB Life 2016; 68(8): 634–644. doi: 10.1002/iub.1521.

Labels
Paediatric clinical oncology Surgery Clinical oncology

Article was published in

Clinical Oncology

Issue 6

2018 Issue 6

Most read in this issue
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#