Virtuální realita v rehabilitaci pacientů po CMP
Autoři:
Šárka Baníková 1,2,3; Alice Najsrová 3,4; Iva Fiedorová 1,2; Jana Trdá 5; Ondřej Volný 3,4
Působiště autorů:
Department of Rehabilitation and Sports Medicine, University Hospital Ostrava, Ostrava, Czech Republic
1; Department of Rehabilitation and Sports Medicine, Faculty of Medicine, University Ostrava, Ostrava, Czech Republic
2; Centre for Clinical Neurosciences, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
3; Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic
4; VR LIFE Ltd., Ostrava, Czech Republic
5
Vyšlo v časopise:
Cesk Slov Neurol N 2024; 87(3): 185-190
Kategorie:
Přehledný referát
doi:
https://doi.org/10.48095/cccsnn2024185
Souhrn
Cévní mozková příhoda je jednou z nejčastějších příčin získané disability. Představuje závažný socioekonomický problém, který může mít závažný dopad na různé oblasti života. Včasná a dostatečně intenzivní rehabilitace po CMP významně přispívá k optimálním funkčním výsledkům a zlepšení kvality života pacientů. Nové neurorehabilitační přístupy založené na technologiích a virtuální realitě (VR) umožňují navrhnout individualizovaný intenzivní rehabilitační trénink a zlepšit motorické učení prostřednictvím multimodální zpětné vazby. Rehabilitace ve VR je vysoce motivující terapie s řadou výhod pro pacienta a zvyšuje také compliance pacienta k terapii. Představuje bezpečnou formu terapie a po náležitém edukování pacienta není nezbytně nutná fyzická přítomnost fyzioterapeuta. Díky tomu je možné využití VR v domácím cvičení a telerehabilitaci. Cílem tohoto přehledového článku je poskytnout aktuální poznatky a stručné informace o neurorehabilitaci po CMP založené na VR s důrazem na na MDR (medical device regulation) certifikovaný VR rehabilitační zdravotnický prostředek, který byl vyvinut ve spolupráci FN Ostrava a společnosti VR Life.
Klíčová slova:
neurorehabilitace – CMP – neuroplasticita – virtuální realita
Zdroje
1. Feigin VL, Barker-Collo S, McNaughton H et al. Long--term neuropsychological and functional outcomes in stroke survivors: current evidence and perspectives for new research. Int J Stroke 2008; 3(1): 33– 40. doi: 10.1111/ j. 1747-4949.2008.00177.x.
2. Khan A, Podlasek A, Somaa F. Virtual reality in post-stroke neurorehabilitation – a systematic review and meta-analysis. Top Stroke Rehabil 2021; 30(1): 53– 72. doi: 10.1080/ 10749357.2021.1990468.
3. Lee HS, Park YJ, Park SW. The effects of virtual reality training on function in chronic stroke patients: a systematic review and meta-analysis. Biomed Res Int 2019; 2019: 7595639. doi: 10.1155/ 2019/ 7595639.
4. Massetti T, Da Silva TD, Crocetta TB et al. The clinical utility of virtual reality in neurorehabilitation: a systematic review. J Cent Nerv Syst Dis 2018; 10: 1179573518813541. doi: 10.1177/ 1179573518813541.
5. Karamians R, Proffitt R, Kline D et al. Effectiveness of virtual reality and gaming-based interventions for upper extremity rehabilitation poststroke: a meta-analysis. Arch Phys Med Rehabil 2019; 101(5): 885– 896. doi: 10.1016/ j. apmr.2019.10.195.
6. Wiley E, Khattab S, Tang A. Examining the effect of virtual reality therapy on cognition post-stroke: a systematic review and meta-analysis. Disabil Rehabil Assist Technol 2020; 17(1): 50– 60. doi: 10.1080/ 17483107.2020.1755
376.
7. De Rooij JM, Van De Port GL, Meijer JW. Effect of virtual reality training on balance and gait ability in patients with stroke: systematic review and meta-analysis. Phys Ther 2016; 96(12): 1905– 1918. doi: 10.2522/ ptj. 20160054.
8. Mekbib DB, Zhao Z, Wang J et al. Proactive motor functional recovery following immersive virtual reality-based limb mirroring therapy in patients with subacute stroke: a basic principle of brain function. Neurotherapeutics 2020; 17(4): 1919– 1930. doi: 10.1007/ s13311-020-00882-x.
9. Rizzolatti G, Sinigaglia C, Zhang L et al. The mirror mechanism: a basic principle of brain function. Nat Rev Neurosci 2016; 17(12): 757– 765. doi: 10.1038/ nrn.
2016.135.
10. Hao J, Xie H, Harp K et al. Effects of virtual reality intervention on neural plasticity in stroke rehabilitation: a systematic review. Arch Phys Med Rehabil 2022; 103(3): 523– 541. doi: 10.1016/ j. apmr.2021.06.024.
11. Mekbib DB, Han J, Zhang L et al. Virtual reality therapy for upper limb rehabilitation in patients with stroke: a meta-analysis of randomized clinical trials. Brain Inj 2020; 34(4): 456– 465. doi: 10.1080/ 02699052.2020.1725126.
12. Maier M, Ballester BR, Duff A et al. Effect of specific over nonspecific VR-based rehabilitation on poststroke motor recovery: a systematic meta-analysis. Neurorehabil Neural Repair 2019; 33(2): 112– 129. doi: 10.1177/ 1545968318820169.
13. Merians AS, Fluet GG, Qiu Q et al. Hand focused upper extremity rehabilitation in the subacute phase post-stroke using interactive virtual environments. Front Neurol 2020; 11: 573642. doi: 10.3389/ fneur.2020.573642.
14. Ghai S, Ghai I, Lamontagne A. Virtual reality training enhances gait poststroke: a systematic review and meta-analysis. Ann N Y Acad Sci 2020; 1478(1): 18– 42. doi: 10.1111/ nyas.14420.
15. Xiao X, Lin Q, Lo WL et al. Cerebral reorganization in subacute stroke survivors after virtual reality-based training: a preliminary study. Behav Neurol 2017; 2017: 6261479. doi: 10.1155/ 2017/ 6261479.
16. Li Z, Han XG, Sheng J et al. Virtual reality for improving balance in patients after stroke: a systematic review and meta-analysis. Clin Rehabil 2016; 30(5): 432– 440. doi: 10.1177/ 0269215515593611.
17. Hill JE, Twamley J, Breed H et al. Scoping review of the use of virtual reality in intensive care units. Nurs Crit Care 2022; 27(6): 756– 771. doi: 10.1111/ nicc.12732.
18. Kwon SH, Park JK, Koh YH. A systematic review and meta-analysis on the effect of virtual reality-based rehabilitation for people with Parkinson’s disease. J Neuroeng Rehabil 2023; 20(1): 94. doi: 10.1186/ s12984-023-01219-3.
19. Triegaardt J, Han TS, Sada Ch et al. The role of virtual reality on outcomes in rehabilitation of Parkinson’s disease: meta-analysis and systematic review in 1031 participants. Neurol Sci 2020; 41(3): 529– 536. doi: 10.1007/ s10072-019-04144-3.
20. Li R, Zhang Y, Jiang Y et al. Rehabilitation training based on virtual reality for patients with Parkinson’s disease in improving balance, quality of life, activities of daily living, and depressive symptoms: a systematic review and meta-regression analysis. Clin Rehabil 2021; 35(8): 1089– 1102. doi: 10.1177/ 0269215521995179.
21. Yu J, Wu J, Lu J et al. Efficacy of virtual reality training on motor performance, activity of daily living, and quality of life in patients with Parkinson’s disease: an umbrella review comprising meta-analyses of randomized controlled trials. J Neuroeng Rehabil 2023; 20(1): 133. doi: 10.1186/ s12984-023-01256-y.
22. Cortés-Pérez I, Sánchez-Alcalá M, Nieto-Escámez FA et al. Virtual reality-based therapy improves fatigue, impact, and quality of life in patients with multiple sclerosis. A systematic review with a meta-analysis. Sensors 2021; 21(21): 7389. doi: 10.3390/ s21217389.
23. Cortés-Pérez I, Osuna-Pérez MC, Montoro-Cárdenas D et al. Virtual reality-based therapy improves balance and reduces fear of falling in patients with multiple sclerosis. a systematic review and meta-analysis of randomized controlled trials. J Neuroeng Rehabil 2023; 20(1): 42. doi: 10.1186/ s12984-023-01174-z.
24. Han YG, Park SW. Effectiveness of virtual reality on activities of daily living in children with cerebral palsy: a systematic review and meta-analysis. PeerJ 2023; 11: e15964. doi: 10.7717/ peerj. 15964.
25. Tobaiqi MA, Albadawi EA, Fadlalmola HA et al. Application of virtual reality-assisted exergaming on the rehabilitation of children with cerebral palsy: a systematic review and meta-analysis. J Clin Med 2023; 12(22): 7091. doi: 10.3390/ jcm12227091.
26. Hazzaa NM, Manzour AF, Yahia E et al. Effectiveness of virtual reality-based programs as vestibular rehabilitative therapy in peripheral vestibular dysfunction: a meta-analysis. Eur Arch Otorhinolaryngol 2023; 280(7): 3075– 3086. doi: 10.1007/ s00405-023-07911-3.
27. Calderone A, Carta D, Cardile D et al. Use of virtual reality in patients with acquired brain injury: a systematic review. J Clin Med 2023; 12(24): 7680. doi: 10.3390/ jcm12247680.
28. De Araújo AVL, Neiva JFO, Monteiro CBM et al. Efficacy of virtual reality rehabilitation after spinal cord injury: a systematic review. Biomed Res Int 2019; 2019: 7106951. doi: 10.1155/ 2019/ 7106951.
29. Austin PD, Siddal PJ. Virtual reality for the treatment of neuropathic pain in people with spinal cord injuries: a scoping review. J Spinal Cord Med 2021; 44(1): 8– 18. doi: 10.1080/ 10790268.2019.1575554.
30. Baeza-Barragán MR, Labajos Manzanares MT, Ruiz Vergara C et al. The use of virtual reality technologies in the treatment of Duchenne muscular dystrophy: systematic review. JMIR Mhealth Uhealth 2020; 8(12): e21576. doi: 10.2196/ 21576.
Štítky
Dětská neurologie Neurochirurgie NeurologieČlánek vyšel v časopise
Česká a slovenská neurologie a neurochirurgie
2024 Číslo 3
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Nejčastější nežádoucí účinky venlafaxinu během terapie odeznívají
- Neodolpasse je bezpečný přípravek v krátkodobé léčbě bolesti
Nejčtenější v tomto čísle
- Vztah mezi výskytem benigních fascikulací, psychologickým profilem pacienta, biochemickými parametry a mutací v SMN1 genu
- Virtuální realita v rehabilitaci pacientů po CMP
- Anestéziologický manažment u detí s neuromuskulárnymi ochoreniami
- Detekce nedostatečné snahy a simulace kognitivního oslabení během neuropsychologického vyšetření pomocí metod RBANS a SIMS