Detection of the JAK2V617F mutation in myeloproliferative disorders - an overview and own experiences
Authors:
Z. Křístková; D. Dvořáková; F. Rázga; J. Pospíšilová; J. Kujíčková; M. Doubek; J. Mayer
Authors‘ workplace:
Centrum molekulární biologie a genové terapie, Interní hematoonkologická klinika (IHOK), FN Brno a LF MU, kooperující pracoviště České leukemické skupiny – pro život (CELL , The CzEch Leukemia Study Group – for Life)
Published in:
Transfuze Hematol. dnes,15, 2009, No. 3, p. 143-148.
Category:
Comprehensive Reports, Original Papers, Case Reports
Overview
The lack of reliable molecular markers is responsible for difficult detection and monitoring of Ph-negative myeloproliferative diseases, such as polycythemia vera, essential thrombocythemia or idiopathic myelofibrosis. In recent years, the V617F point mutation in the JAK2 gene (JAK2V617F) come to be a feasible marker for confirmation and evaluation of such hematology disorders. In this paper we report a review of diagnostic methods developed for investigation of JAK2 gene mutations and we present our experience with detection of JAK2V617F. Two methods (allelic discrimination analysis and real-time polymerase chain reaction for quantitative determination of mutant allele burden) are compared and discussed. We conclude that this detection of JAK2V617F mutant allele burden may be used for establishing possible correlation between clinical symptoms and hematologic abnormalities for patients suffering from myeloproliferative disorders.
Key words:
JAK2V617F, myeloproliferative disorders, real-time polymerase chain reaction, allelic discrimination, allele burden
Sources
1. James C, Ugo V, Le Couedic J-P, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144-1148.
2. Baxter EJ, Scott LM, et al. Acquired mutation of tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054-1061.
3. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Eng J Med 2005; 352: 1779-1790.
4. Saharinen P, Silvennoinen O. The pseudokinase domain is required for suppression of basal activity of JAK2 and JAK3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem 2002; 277: 47954-47963.
5. Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem 2007; 282: 20059-20063.
6. Delhommeau F, Pisani DF, James C, Casadevall N, Vainchenker W, et al. Oncogenic mechanisms in myeloproliferative disorders. Cell Mol Life Sci 2006; 63: 2939-2953.
7. Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008; 22: 14-22.
8. Swerdlow SH, Campo E, Harris NL, Jaffe ES, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, France, 2008, 1-439.
9. Kralovics R, Teo S, Li S, Theocharides A, Buser AS Tichelli A, Skoda RC. Acquisition of V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood 2006; 108: 1377-1380.
10. Nussenzveig RH, Swierczek SI, Jelinek J, Gaikwad A, et al. Polycythemia vera is not initiated by JAK2V617F mutation. Experimental Hematology 2007; 35: 32-38.
11. Veselovska J, Pospisilova D, Pekova S, et al. Most pediatric patients with essential trombocythemia show hypersensitivity to erythropoietin in vitro, with rare JAK2 V617F-positive erythroid colonies. Leukemia Research 2008; 32: 369-377.
12. Tefferi A, Lasho TL, Schwager SM, et al. The clinical phenotype of wild-type, heterozygous and homozygous JAK2 V17F in polycythemia vera. Cancer 2006; 106(3): 631-635.
13. Vannucchi AM, Antoniolo E, Guglielmeli P, et al. Prospective identification of high-risk polycythemia vera patients based on JAK2V617F allele burden. Leukemia 2007; 21: 1952-1959.
14. Poodt J, Fijnheer R, Walsh IBB, Hermans MHA. A sensitive and reliable semi-quantitative real-time PCR assay to detect JAK2 V617F in blood. Hem Oncology 2006; 24: 227-233.
15. Steensma DP, Dewald GW, Lasho TL, et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and myelodysplastic syndromes. Blood 2005; 106: 1207–1209.
16. Jelinek J, Oki Y, Gharibyan V, et al. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood 2005; 106: 3370–3373.
17. Jones AV, Kreil S, Zoi K, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 2005; 106: 2162–2168.
18. Sattler M, Walz C, Crowley BJ, et al. A sensitive high-throughput method to detect activating mutations of JAK2 in peripheral-blood samples. Blood 2006; 107: 1237-1238.
19. McClure R, Mai M, Lasho T. Validation of two clinically useful assays for evalution of JAK2 V617F mutation in chronic myeloproliferative disorders. Leukemia 2006; 20: 168-171.
20. Chen Q, Lu P, Jones AV. Amplification refractory mutation system, a highly sensitive and simple polymerase chain reaction assay, for the detection of JAK2 V617F mutation in chronic myeloproliferative disorders. J Mol Diagn 2007; 9(2): 272–276.
21. Antonioli E, Guglielmeli P, Poli G, et al. Influence of JAK2V617F allele burden on phenotype in essential trombocythemia. Haematologica 2008; 93(1): 41-48.
22. Wolstencroft EC, Hanlon K, Harries LW, et al. Development of a quantitative real-time polymerase chain reaction assay for the detection of the JAK2 V617F mutation. J Mol Diag 2007; 9(1): 42-46.
23. Kröger N, Badbaran A, Holler E, et al. Monitoring of the JAK2-V617F mutation by highly sensitive quantitative real-time PCR after allogeneic stem cell transplantation in patients with myelofibrosis. Blood 2007; 109(3): 1316-1321.
24. Hammond E, Shaw K, Carnley B, Png S, James I, Herrmann R. Quantitative determination of JAK2 V617F by TaqMan: An absolute measure of averaged copies per cell that may be associated with the different types of myeloproliferative disorders. J Mol Diagn 2007; 9(2): 242-8.
25. Murugesan G, Aboudola S, Szpurka H, et al. Identification of JAK2 V617F mutation in chronic myeloproliferative disorders using FRET probes and melting curve analysis. Am J Clin Pathol 2006; 125: 625-633.
26. Pekova S, Hoffmann R, Jindra P, Novakova L, et al. Mutation JAK2 V617F in patients with myeloproliferative disorders and technical aspects of its detection. Blood 2006; 108: 313B.
27. Marková J, Průková D, Volková Z, Schwarz J. A new allelic discrimination assay using locked nucleic acid-modified nucleotides (LNA) probes for detection of JAK2 V617F mutation. Leuk Lymphoma 2007; 48(3): 636-639.
28. Lasho TL, Mesa R, Gilliland DG, et al. Mutation studies in CD3+, CD19+ and CD34+ cell fractions in myeloproliferative disorders with homozygous JAK2(V617F) in granulocytes. Br J Haematol 2005; 130: 797-799.
29. Delhommeau F, Dupont S, Tonetti C, Massé A, et al. Evidence that JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood 2007; 109: 71-77.
30. Li S, Kralovics R, De Libero G, Theocharides A, et al. Clonal heterogeneity in polycythemia vera patients with JAK2 exon 12 and Jak2-V617F mutations. Blood 2008; 111: 3863-3866.
31. Scott LM, Scott MA, Campbell PJ, Green AR. Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood 2006; 108: 2435-2437.
32. Lippert E, Boissinot M, Kralovics R, Girodon F, et al. The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera. Blood 2006; 108: 1865-1867.
33. Schnittger S, Bacher U, Kern W, Haferlach C. JAK2V617F as progression marker in CMPD and as cooperative mutation in AML with trisomy 8 and t(8;21): a comparative study on 1130 CMPD and 269 AML cases. Leukemia 2007; 21: 1843-1845.
Labels
Haematology Internal medicine Clinical oncologyArticle was published in
Transfusion and Haematology Today
2009 Issue 3
Most read in this issue
- Detection of the JAK2V617F mutation in myeloproliferative disorders - an overview and own experiences
- Successful treatment of early molecular relapse of variant form of secondary acute promyelocytic leukemia with arsenic trioxide
- Warfarin-induced skin necrosis, case report and survey of resources
- The role of positron emission tomography and combined positron emission tomography with computed tomography in staging and response assessment in patients with non-Hodgkin’s lymphoma. Part II: Response evaluation