History of glucocorticoid therapy in the treatment of children acute leukemia
Authors:
M. Špenerová 1; J. Srovnal 1,2; J. Potešil 1; M. Hajdúch 2; V. Mihál 1; P. Džubák 1,2
Authors‘ workplace:
Dětská klinika LF UP a FN, Olomoucpřednosta prof. MUDr. V. Mihál, CSc.
1; Laboratoř experimentální medicíny, Ústav molekulární a translační medicíny, LF UP, Olomoucředitel doc. MUDr. M. Hajdúch, Ph. D.
2
Published in:
Čes-slov Pediat 2014; 69 (6): 350-362.
Category:
Review
Overview
Glucocorticoids (GCc) play an important role in the treatment of various diseases and their implication in clinical oncology is valuable for decades. For the ability to induce apoptosis, GCs are predominantly used in the treatment of the acute lymphoblastic leukemia (ALL) the most common malignancy in childhood. GCs were the subject of many research projects designed to characterise the chemical properties, synthesis of new analogues, to clarify the mechanisms of action on the cellular and molecular level and to analyse the mechanism of resistance to glucocorticoid therapy.
Their importance in the treatment of childhood leukemia has increased during this period, so they become integral part of all treatments protocols for childhood ALL. Initially used cortisone and adrenocorticotropin hormone (corticotropin, ACTH) were replaced by other synthetic´s analogues, particularly prednisone (PRED) and dexamethasone (DEXA). Properties of individual GCs determine their use in different phases of the therapy. In addition, the response to corticosteroids became an independent prognostic factor in childhood ALL. Due to the variability of the in vivo response to GC´s therapy, there is a significant intention to adapt GC´s therapy for individual patients to achieve the maximum beneficial effect while minimizing the side.
Key words:
acute leukemia, glucocorticoids, prednisone, dexamethasone
Sources
1. Hartman FA, Brownell KA. The hormone of the adrenal cortex. Science 1930; 72: 76.
2. Swingle WW, Pfiffner JJ. The revival of comatose adrenalectomized cats with an extract of the suprarenal cortex. Science 1930; 72: 75–76.
3. Rowentree LG, Greene CH, Ball RG, et al. Treatment of Addison‘s with the cortical hormone of the suprarenal gland, summary of immediate results in twenty cases treated with the preparation made by Swingle and Pfiffner. JAMA 1931; 97: 1446–1453.
4. Kendall EC. The development of cortisone as a therapeutic agent. Indian Med J 1951; 45: 239–241.
5. Hillier SG. Diamonds are forever: the cortisone legacy. J Endocrinol 2007; 195: 1–6.
6. Pfiffner JJ, Wintersteiner O, Vars HM. Chemical studies on the adrenal cortex: I. fractination studies on hormone concentrates. J Biol Chem 1935; 111: 585–597.
7. Mason HL, Myers CS, Kendall EC. The chemistry of crystalline substances isolated from the suprarenal gland. J Biol Chem 1936; 114: 613–631.
8. Kendall EC. Hormones of the adrenal cortex. Bull N Y Acad Med 1953; 29: 91–100.
9. Hench PS. The reversibility of certain rheumatic and non-rheumatic conditions by the use of cortisone or of the pituitary adrenocorticotropic hormone. Ann Intern Med 1952; 36: 1–38.
10. Engleman EP, Krupp MA, Saunders WW, et al. Rheumatoid arthritis – an evaluation of long-term treatment with cortisone. Calif Med 1954; 80: 369–374.
11. Farber EM, Walton RG. Experiences with ACTH and cortisone in selected dermatoses. Calif Med 1952; 76: 149–154.
12. Ormsby HL, Shirley SY, Aikenhead JF, et al. ACTH and cortisone therapy in eye disease. CMAJ 1952; 66: 62–66.
13. Rowe AH Jr, Rowe AH. Cortisone and corticotropin in allergic disease. Calif Med 1952; 77: 387–390.
14. Collip JB, Anderson EM, Thomson DL. The adrenocorticotropic hormone of the anterior pituitary lobe. Lancet 1933; 222: 347–348.
15. Li ChH, Evans HM, Simpson ME. Adrenocorticotropic hormone. J Biol Chem 1943; 149: 413–424.
16. Selye H. Thymus and adrenals in the response of the organism to injuries and intoxications. Br J Exp Pathol 1936; 17: 234–248.
17. Dougherty TF, White A. Effect of pituitary adrenotropic hormone on lymphoid tissue. Exp Biol Med 1943; 53; 132–133.
18. Murphy JB, Sturm E. The effect of adrenal cortical and pituitary adrenotropic hormones on transplanted leukemia in rats. Science 1944; 99: 303.
19. Heilman FR, Kendall EC. The influence of 11-dehydro-17-hydroxycorticosterone (compound E) on the growth of a malignit tumor in the mouse. Endocrinol 1944; 34: 416–420.
20. Hills AG, Forsham PH, Finch CA. Changes in circulatinkg leukocytes induced by the administrativ of pituitary adrenocorticotrophic hormone (ACTH) in man. Blood 1948; 3: 755–768.
21. Hutchings BL, Mowat JH, Oleson JJ, et al. Pteroylaspartic acid, an antagonist for pteroylglutamic acid. J Biol Chem 1947; 170: 323–328.
22. Farber S, Diamond LK, Mercer RD, et al. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4.aminopteryl-glutamic acid (aminopterin). NEJM 1948; 238: 787–793.
23. Miller DR. A tribute to Sidney farber – the father of modern chemotherapy. Brit J Haematol 2006; 134: 20–26.
24. Pearson OH, Eliel LP, Rulon WR, et al. ACTH and cortisone-induced regression of lymphoid tumors in man. Cancer 1949; 2: 943–945.
25. Pearson OH, Eliel LP, Talbot TR Jr. The use of ACTH and kortisone in neoplastic disease. Bull NY Acad Med 1950; 26: 235–239.
26. Rosenthal MC, Saunders RH, Schwartz LI, et al. The use of adrenocorticotropic hormone and cortisone in the treatment of leukemia and leukosarcoma. Blood 1951; 6: 804–823.
27. Bierman HR, Kelly KH, Petrakis NL, et al. Duration of life in children treated with corticotropin and corticosterone. Calif Med 1952;77:238–241.
28. Burchenal JH. Present status of ACTH, cortisone and the antimetabolites in the treatment of leukemia and related disease. Acta Haematol 1952; 7: 193–204.
29. Jedlicka V. Adrenokortikotropní hormon (ACTH) a kortizon v léčení chronické lymfatické leukemie. Čes--slov Onkol 1955; 2: 274–290.
30. Hrodek O, Janele J, Mitera M, et al. Novější pokusy o vyvolávání remisí u akutních leukemií. Čas Lék čes 1954; 43: 917–921.
31. Sarett LH. Partial synthesis of pregnene-4-triol-17(b), 20(b), 21-dione-3, 11 and pregnene-4-diol-17(b),21-trione-3,11,20 monoacetate. J Biol Chem 1946; 162: 601–-632.
32. Raviňa E, et al. The Evolution of Drug Discovery; from Traditional Medicines to Modern Drugs. Germany, Wiley-VCH Verlag GmbH & Co. KGaA, 2011: 1–511. ISBN 978-3-527-32669-3.
33. Walton CHA. Clinical experience with dexamethasone. CMAJ 1959; 81: 724–726.
34. Hyman CB, Sturgeon P, et al. Prednisone therapy of acute lymphatic leukemia in children. Cancer 1956; 9: 965–970.
35. Frei E III. Confrontation, passion, and personalization. Cli Cancer Res 1997; 3:2554–2562.
36. Skipper H, Schabel F, Wilcox WS. Experimental evaluation of potential anticancer agents. On the criteria and kinetics associated with „curability” of experimental leukemia. Cancer Chemother Rep 1964; 35: 1–111.
37. Freireich EJ Karon M, Frei E III. Quadruple combination therapy (VAMP) for acute lymphoblastic leukemia of childhood. Proc Am Assoc Cancer Res 1964; 5: 20.
38. Frei E III, Karon M, Levin RH, et al. The effectiveness of combinations of antileukemic agents in inducing and maintaining remission in children with acute leukemia. Blood 1965; 26: 642–656.
39. Burchenal JH, Murphy ML. Long term survivors in acute leukemia. Cancer Res 1965; 25: 1491–1495.
40. George P, Hernandez K, Hustu O, et al. A study of „total therapy” of acute lymphocytic leukemia in children. J Pediatr 1968; 72: 399–409.
41. Henze G, Langermann HJ, Ritter J, et al. Treatment strategy for different risk groups in childhood acute lymphoblastic leukemia: A report from the BFM Study Group. Haematology Blood Transfusion 1981; 26: 87–93.
42. Starý J. Výsledky léčby dětí s akutní lymfoblastickou leukemií dle protokolu BFM 83 v České republice, Kooperativní skupina pro dětskou leukemii České republiky. Čes-slov Pediat 1993; 7: 391–397.
43. Riehm H, Reiter A, Schrappe M, et al. Corticosteroid-dependent reduction of leukocyte count in blood as a prognostic factor in acute lymphoblastic leukemia in childhood (therapy study ALL-BFM 83). Klinische Pädiatrie 1987; 199: 151–160.
44. Dördelmann M, Reiter A, Borkhardt A, et al. Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood 1999; 15: 1209–1217.
45. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55–63.
46. Mihal V, Hajduch M, Janostakova A, et al. Využití in vitro analýzy lékové rezistence v léčbě leukemií dětského věku. Klin Onkol 2000; 2: 39–42.
47. Kaspers GJL, Veerman AJP, Popp-Snijders C, et al. Comparison of the antileukemic activity in vitro of dexamethasone and prednisolone in childhood acute lymphoblastic leukemia. Med Pediatr Oncol 1996; 27: 114–121.
48. Mihal V, Hajduch M, Noskova V, et al. Differential antileukemic activity of prednisolone and dexamethasone in freshly isolated leukemic cells. Adv Exp Med Biol 1999; 457: 461–471.
49. Schrappe M, Zimmermann M, Moricke A, et al. Dexamethasone in induction can eliminace one third of relapses in childhood acute lymphoblastic leukemia (ALL): resultes of an international randomized trial in 3655 patients (trial AIEOP – BFM ALL, 2000). Blood 2008; 112: 9.
50. International register of current randomised trials in childhood acute lymphoblastic leukemia. Childhood ALL Collaborative Group, 1996.
51. International collaborative treatment protocol for children and adolescent with acute lymphoblastic leukemia. AIEOP – BFM ALL, 2010.
52. Klieber MA, Underhill C, Hammond GL, et al. Corticosteroid-binding globulin, a structural basis for steroid transport and proteinase-triggered release. J Biol Chem 2007; 282: 29594–29603.
53. Tissing WJE, Meijerink JPP, Den Boer ML, et al. Genetic variations in the glucocorticoid receptor gene are not related to glucocorticoid resistance in childhood acute lymphoblastic leukemia. Clin Cancer Res 2005; 11: 6050–6056.
54. Ploner CH, Schmidt S, Presula E, et al. Glucocorticoid-induced apoptosis and glucocorticoid resistance in acute lymphoblastic leukemia. J Steroid Biochem Mol Biol 2005; 93: 153–160.
55. Inaba H, Pui ChH. Glucocorticoid use in acute lymphoblastic leukemia. Lancet Oncol 2010; 1: 1096–1106.
56. Nachman JB, McNeer JL. The optimal use of steroids in paediatric acute lymphoblastic leukaemia: no easy answers. Brit J Haematol 2010; 149: 638–652.
57. Lippman ME, Halterman RH, Leventhal BG, et al. Glucocorticoid binding proteins in human acute lymphoblastic leukemic leukemic blast cells. J Clin Invest 1973; 52: 1715–1725.
58. Kontula K, Andersson LC, Paavonen T, et al. Glucocorticoid receptors and glucocorticoid sensitivity of human leukemic cells. Int J Cancer 1980; 26: 177–183.
59. Ponec M, Kempenaar J, Shroot B, et al. Glucocorticoids: Binding affinity and lipophilicity. J Pharm Sci 1986; 75: 973–975.
60. Balis FM, Lester CM, Chrousos GP, et al. Differences in cerebrospinal fluid penetration of corticosteroids: possible relationship to the prevention of meningeal leukemia. J Clin Oncol 1987; 5: 202–207.
61. Sullivan MP, Chen T, Dyment PG, et al. Equivalence of intrathecal chemotherapy and radiotherapy as central nervous system prophylaxis in children with acute lymphatic leukemia: a pediatric oncology group study. Blood 1982; 60: 948–958.
62. Matloub Y, Lindemulder S, Gaynon PS, et al. Intrathecal triple therapy decreases central nervous system relapse but fails to improve event-free survival when compared with intrathecal methotrexate: results of the Children’s Cancer Group (CCG) 1952 study for standard-risk acute lymphoblastic leukemia, reported by the Children’s Oncology Group. Blood 2006; 108: 1165–1173.
Labels
Neonatology Paediatrics General practitioner for children and adolescentsArticle was published in
Czech-Slovak Pediatrics
2014 Issue 6
Most read in this issue
- Dextromethorphan in the hands of a teenager – cheap and legal ticket on a „trip“
- Neonatal hemochromatosis associated with renal tubular dysgenesis
-
Onychomadesis po onemocnění ruka-noha-ústa
(hand-foot-mouth disease) - Refeeding syndrome in childhood