#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The folic acid and neural tube defects – from past to present


Authors: V. Cingel 1;  H. Gbelcová 2;  J. Rajec 3,4;  N. Gašparovičová 5;  I. Varga 6,7
Authors‘ workplace: Univerzitné pracovisko reprodukčnej medicíny, 1. Gynekologicko-pôrodnícka klinika ;  II. Gynekologicko-pôrodnícka klinika, Lekárska fakulta a Univerzitná Nemocnica Bratislava ;  Ústav farmakológie a klinickej farmakológie, Lekárska fakulta, Univerzita Komenského ;  Ústav lekárskej biológie, genetiky a klinickej genetiky, Lekárska fakulta ;  Klinika detskej chirurgie, Detská fakultná nemocnica a Lekárska fakulta ;  Univerzita Komenského, Bratislava prednosta doc. MUDr. J. Trnka, CSc. 1;  a Univerzitná nemocnica Bratislava, Univerzita Komenského, Bratislava prednosta doc. MUDr. D. Böhmer, PhD. 2;  Bratislava prednosta prof. MUDr. V. Kristová, CSc. 3;  II. Onkologická klinika, Národný onkologický ústav, Bratislava prednosta doc. MUDr. J. Mardiak, CSc., mim. prof. 4;  Univerzita Komenského, Bratislava prednosta prof. MUDr. K. Holomáň, CSc. 5;  Ústav histológie a embryológie, Lekárska fakulta, Univerzita Komenského, Bratislava prednosta doc. MUDr. Š. Polák, CSc. 6;  Lekárska fakulta a Univerzitná Nemocnica Bratislava, Univerzita Komenského, Bratislava prednosta prof. MUDr. L. Borovský, CSc. 7
Published in: Čes-slov Pediat 2012; 67 (Suppl 1): 45-55.
Category: Review

Overview

It has been 20 years now since the first study demonstrated the embryo protective effect of folic acid in the prevention of neural tube defects. Nevertheless these defects represent one of the most common congenital anomalies in the world. For this reason we offer the review of the relationship between folic acid and inborn anomalies focused on neural tube defects. The present article gives a historical view on the most important studies demonstrated the embryo protective effects of folic acid, an overview of actual knowledge about pathogenesis, genetic and environmental aspects of neural tube defects formation. Moreover it emphasizes the possibility of folic acid utilization in the prevention of congenital anomalies. We mentioned about the possible risks of using folic acid (focused on tumorgenesis) as well as about using folic acid in women with epilepsy.

Key words:
folic acid, congenital anomalies, neural tube defects, primary prevention


Sources

1. Czeizel AE. The primary prevention of birth defects: Multivitamins or folic acid? Int J Med Sci 2004; 1: 50–61.

2. Mitchell LE. Epidemiology of neural tube defects. Am J Med Genet C Semin Med Genet 2005; 135: 88–94.

3. Manning N, Archer N. Treatment and outcome of serious structural congenital heart disease. Semin Neonatol 2001; 6: 37–47.

4. Vojtassák J, Malová J, Demjenová L, et al. Developmental defects and chromosomal aberrations in spontaneous abortions and stillbirths. Gen Physiol Biophys 1999; 18: 182–188.

5. Šípek A, Horáček J, Gregor V, et al. Neural tube defects in the Czech Republic during 1961–1999: incidences, prenatal diagnosis and prevalences according to maternal age. J Obstet Gynaecol 2002; 22: 501–507.

6. Behunová J, Podracká L. Rázštepy nervovej trubice – súčasné pohľady na etiopatogenézu a možnosť prevencie kyselinou listovou. Čes-slov Pediat 2008; 63: 38–46.

7. Copp AJ, Greene NDE. Genetics and development of neural tube defects. J Pathol 2010; 220: 217–230.

8. Šabová L, Horn F, Drdulová T, et al. Clinical condition of patients with neural tube defects. Rozhl Chir 2010; 89: 471–477.

9. Horn F, Smrek M, Babala J, et al. Kraniálne defekty neurálnej rúry. Čes Slov Neurol N 2010; 73: 706–710.

10. Shurtleff DB, Luthy DA, Nyberg DA, et al. Meningomyelocele: managment in utero and post natum. Ciba Found Symp 1994; 181: 270–286.

11. Hunt GM. The median survival time in open spina bifida. Dev Med Child Neurol 1997; 39: 568.

12. MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council vitamin study. Lancet 1991; 338: 131–137.

13. Czeizel AE, Dudás I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 1992; 327: 1832–1835.

14. Center Disease Control. Recommendations for the use of folic acid to reduce the number of cases of spina bifida and other neural tube defects. MMWR Recomm Rep 1992; 41: 1–7.

15. Volcik KA, Blanton SH, Kruzel MC, et al. Testing for genetic associations in a spina bifida population: analysis of the HOX gene family and human candidate gene regions implicated by mouse models of neural tube defects. Am J Med Genet 2002; 110: 203–207.

16. Frey L, Hauser WA. Epidemiology of neural tube defects. Epilepsia 2003; 44: 4–13.

17. Padmanabhan R. Etiology, pathogenesis and prevention of neural tube defects. Cong Anomal 2006; 46: 55–67.

18. Padmanabhan R. Scanning-electron-microscopic studies on the pathogenesis of exencephaly and cranioschisis induced in the rat after neural tube closure. Acta Anat (Basel) 1990; 138: 97–110.

19. Van Allen MI. Multisite neural tube closure in humans. Birth Defects Orig Arctic Ser 1996; 30: 203–225.

20. Seller MJ, Kalousek DK. Neural tube defects: heterogeneity and homogeneity. Am J Med Genet Suppl 1986; 2: 77–87.

21. Velie EM, Shaw GM, Malcoe LH, et al. Understanding the increased risk of neural tube defect-affected pregnancies among Mexico-born women in California: immigration and anthropometric factors. Paediatr Perinat Epidemiol 2006; 20: 219–230.

22. Shepard TH, Brent RL, Friedman JM, et al. Update on new developments in the study of human teratogens. Teratology 2002; 65: 153–161.

23. Ray JG, Vermeulen MJ, Meier C, Wyatt PR. Risk of congenital anomalies detected during antenatal serum screening in women with pregestational diabetes. QJM 2004; 97: 651–653.

24. Vašut K, Anděl T, Kolář J. Hypertermia v těhotenství – rizika a možnosti léčby. Prakt Gyn 2004; 6: 25–27.

25. Moretti ME, Bar-Oz B, Fried S, Koren G. Maternal hyperthermia and the risk for neural tube defects in offspring: systematic review and meta-analysis. Epidemiology 2005; 16: 216–219.

26. Suarez L, Felkner M, Hendricks K. The effect of fever, febrile illnesses, and heat exposures on the risk of neural tube defects in a Texas-Mexico border population. Birth Defects Res A Clin Mol Teratol 2004; 70: 815–809.

27. Hoffbrand AV, Weir DG. Historical review. The history of folic acid. Br J Haematol 2001; 113: 579–589.

28. Mitchell HK, Snell EE, Williams RJ. The concentration of „folic acid“. J Am Chem Soc 1941; 63: 2284.

29. Šabová L, Kovács L. Kyselina listová a vrodené vývojové chyby. Pediatr Prax 2008; 1: 36–38.

30. Smithells RW, Sheppard S, Schorah CJ. Vitamin deficiencies and neural tube defects. Arch Dis Child 1976; 51: 944–949.

31. Johnson WG, Stenroos ES, Heath SC, et al. Distribution of alleles of the methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism in familial spina bifida. Am J Med Genet 1999; 87: P407–P412.

32. Finnell R, Spiegelstein O, Wlodarczyk B, et al. DNA methylation in Folbp1 knockout mice supplemented with folic acid during gestation. J Nutr 2002; 132: 2457S–2461S.

33. Boot MJ, Steegers-Theunissen RPM, Poelmann RE, et al. Folic acid and homocysteine affect neural crest and neuroepithelial cell outgrowth and differentiation in vitro. Dev Dyn 2003; 227: 301–308.

34. Mathers JC. Reversal of DNA hypomethylation by folic acid supplements: Possible role in colorectal prevention. Gut 2005; 54: 579–581.

35. Biniszkiewicz D, Girbnau J, Ramsahoye B, et al. Dnmt1 overexpression causes genomic hypermethylation. Loss of imprinting, and embryonic lethality. Mol Cell Biol 2002; 22: 2124–2328.

36. Jackson M, Krassowska A, Gilbert N, et al. Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol Cell Biol 2004; 24: 8862–8871.

37. Santos F, Hendrich B, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 2002; 241: 172–182.

38. Jackson-Grusby L, Beard C, Possemato R, et al. Loss of genomic methylation causes p53 dependent apoptosis and epigenic deregulation. Nat Genet 2001; 27:31–39.

39. Bohnsack BL, Hirschi KK. Nutrient regulation of cell cycle progression. Annu Rev Nutr 2004; 24: 433–453.

40. Greene NDE, Stanier P, Copp AJ. Genetics of human neural tube defects. Hum Mol Genet 2009; 18: R113–R129.

41. Van der Linden IJ, Afman LA, Heil SG, et al. Genetic variation in genes of folate metabolism and neural-tube defect risk. Proc Nutr Soc 2006; 65: 204–215.

42. Boyles AL, Billups AV, Deak KL, et al. Neural tube defects and folate pathway genes: Family-based association tests of gene-gene and gene-environment interactions. Environ Health Perspect 2006; 114: 1547–1552.

43. De Marco P, Calevo M, Moroni A, et al. Reduced folate carrier polymorphism (80A—>G) and neural tube defects. Eur J Hum Genet 2003; 11: 245–252.

44. O’Leary VB, Pangilinan F, Cox C, et al. Reduced folate carrier polymorphisms and neural tube defect risk. Mol Genet Metab 2006; 87: 364–369.

45. Van der Put NMJ, Steegers-Theunissen RPM, Frosst P, et al. Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida. Lancet 1995; 346: 1070–1071.

46. Shields DC, Kirke PN, Mills JL, et al. The ‘thermolabile’ variant of methylenetetrahydrofolate reductase and neural tube defects: an evaluation of genetic risk and the relative importance of the genotypes of the embryo and the mother. Am J Hum Genet 1999; 64: 1045–1055.

47. Behunova J, Klimcakova L, Zavadilikova E, et al. Methylenetetrahydrofolate reductase gene polymorphisms and neural tube defects epidemiology in the Slovak population. Birth Defects Res A Clin Mol Teratol 2010; 88: 695–700.

48. Raslova K, Bederova A, Gasparovic J, et al. Effect of diet and 677 C—> T 5,10-methylenetetrahydrofolate reductase genotypes on plasma homocyst(e)ine concentrations in Slovak adolescent population. Physiol Res 2000; 49: 651–658.

49. Stegmann K, Ziegler A, Ngo ET, et al. Linkage disequilibrium of MTHFR genotypes 677C/T-1298A/C in the German population and association studies in probands with neural tube defects (NTD). Am J Med Genet 1999; 87: 23–29.

50. Botto LD, Yang Q. 5,10-methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol 2000; 151: 862–877.

51. Zhu H, Wicker NJ, Shaw GM, et al. Homocysteine remethylation enzyme polymorphisms and increased risks for neural tube defects. Mol Genet Metab 2003; 78: 216–221.

52. Brody LC, Conley M, Cox C, et al. A polymorphism, R653Q, in the trifunctional enzyme methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase/formyltetrahydrofolate synthetase is a maternal genetic risk factor for neural tube defects: Report of the Birth Defects Research Group. Am J Hum Genet 2002; 71: 1207–1215.

53. Carroll N, Pangilinan F, Molloy AM, et al. Analysis of the MTHFD1 promoter and risk of neural tube defects. Hum Genet 2009; 125: 247–256.

54. Smithells RW, Sheppard S, Schorah CJ, et al. Possible prevention of neural tube defects by periconceptional vitamin supplementation. Lancet 1980; 1: 339–340.

55. Smithells RW, Sheppard S, Wild J, Schorah CJ. Prevention of neural tube defects recurrences in Yorkshire: final report. Lancet 1989; 2: 498–499.

56. Shaw GM, Schaffer D, Velie EM, et al. Periconceptional vitamin use, dietary folate, and the occurrence of neural tube defects. Epidemiology 1995; 6: 219–226.

57. Werler MM, Shapiro S, Mitchell AA. Periconceptional folic acid exposure and risk of occurrent neural tube defects. JAMA 1993; 269: 1257–1261.

58. Berry RJ, Li Z, Erickson JD, Li S, et al. Prevention of neural-tube defects with folic acid in China. China-U.S. collaborative project for neural tube defect prevention. N Engl J Med 1999; 341: 1485–1490.

59. Czeizel AE. Reduction of urinary tract and cardiovascular defects by periconceptional multivitamin supplementation. Am J Med Genet 1996; 62: 179–183.

60. Czeizel AE. Periconceptional folic acid containing multivitamin supplementation. Eur J Obstet Gynecol Reprod Biol 1998; 78: 151–161.

61. Mašková J, Šípek A, Kollár P. A population-based control study of congenital abormalities and medication use during pregnancy using the Czech National Register of Congenital Abnormalities. Cent Eur J Med 2011; 6: 435–441.

62. Van Beynum IM, Kapusta L, Bakker MK, et al. Protective effect of periconceptional folic acid suppements on the risk of congenital heart defects: a registry-based case-control study in the northern Netherlands. Eur Heart J 2010; 31: 464–471.

63. Czeizel AE, Medveczky E. Periconceptional multivitamin supplementation and multimalformed offspring. Obstet Gynecol 2003; 102: 1255–1261.

64. Tolarova M. Periconceptional supplementation with vitamins and folic acid to prevent recurrence of cleft lip. Lancet 1982; 2: 217.

65. Czeizel AE, Dobo M, Vargha P. Hungarian cohort controlled trial of periconceptional multivitamin supplementation shows a reduction in certain congenital anomalies. Birth Defects Res 2004; 70: 853–861.

66. Wehby GL, Murray JC. Folic acid and orofacial clefts: a review of the evidence. Oral Dis 2010; 16: 11–19.

67. Czeizel AE, Tímár L, Sárközi A. Dose-dependent effect of folic acid on the prevention of orofacial clefts. Pediatrics 1999; 104: 1–7.

68. Li Z, Gindler J, Wang H, et al. Folic acid supplements during early pregnancy and likelihood of multiple births: a population-based cohort study. Lancet 2003; 361: 380–384.

69. Werler MM, Cragan JD, Wasserman CR, et al. Multivitamin supplementation and multiple births. Am J Med Genet 1997; 71: 93–96.

70. Czeizel AE, Métneki J, Dudás I. The higher rate of multiple births after periconceptional multivitamin supplementation: an analysis of causes. Acta Genet Med Gemellol (Roma) 1994; 43: 175–184.

71. Ericson A, Källén B, Aberg A. Use of multivitamins and folic acid in early pregnancy and multiple births in Sweden. Twin Res 2001; 4: 63–66.

72. Czeizel AE, Puhó EH, Langmar Z, et al. Possible association of folic acid supplementation during pregnancy with reduction of preterm birth: a population-based study. Eur J Obstet Gynecol Reprod Biol 2010; 148: 135–140.

73. Sram RJ, Binkova B, Lnenickova Z, et al. The impact of plasma folate levels of mothers and newborns on intrauterinne growth retardation and birth weight. Mut Res 2005; 591: 302–310.

74. Van der Molen EF, Verbruggen B, Nováková I, et al. Hyperhomocysteinemia and other thrombotic risk factors in women with placental vasculopathy. Br J Obstet Gynaecol 2000; 107: 785–691.

75. Ferguson SE, Smith GN, Walker MC. Maternal plasma homocysteine levels in women with preterm premature rupture of membranes. Med Hypotheses 2001; 56: 85–90.

76. Dobó M, Czeizel AE. Long-term somatic and mental development of children after periconceptional multivitamin supplementation. Eur J Pediatr 1998; 157: 719–723.

77. Ortega-García JA, Ferrís-Tortajada J, Claudio L, et al. Case control study of periconceptional folic acid intake and nervous system tumors in children. Childs Nerv Syst 2010; 26: 1727–1733.

78. Ray JG, Singh G, Burrows RF. Evidence for suboptimal use of periconceptional folic acid supplements globally. BJOG 2004; 111: 399–408.

79. Kondo A, Kamihira O, Gotoh M, et al. Folic acid prevents neural tube defects: international comparison of awareness among obstetricians/gynecologists and urologists. J Obstet Gynaecol Res 2007; 33: 63–67.

80. Pötzsch S, Hoyer-Schuschke J, Seelig M, Steinbicker V. Knowledge among young people about folic acid and its importance during pregnancy: a survey in the Federal State of Saxony-Anhalt (Germany). J Appl Genet 2006; 47: 187–190.

81. Gjergja R, Stipoljev F, Hafner T, et al. Knowledge and use of folic acid in Croatian pregnant women – a need for health care education initiative. Reprod Toxicol 2006; 21: 16–20.

82. Paulik E, Császár J, Kozinszky Z, Nagymajtényi L. Preconceptional and prenatal predictors of folic acid intake in Hungarian pregnant women. Eur J Obstet Gynecol Reprod Biol 2009; 145: 49–52.

83. Rambousková J, Dlouhý P, Krízová E, et al. Health behaviors, nutritional status, and anthropometric parameters of Roma and non-Roma mothers and their infants in the Czech Republic. J Nutr Educ Behav 2009; 41: 58–64.

84. Behunová J, Podracká Ľ. Prevencia rázštepov nervovej trubice alebo, ako možno znížiť výskyt vrodených anomálii CNS? Detský Lekár 2006; 2: 19–22.

85. Czeizel AE. Folic acid: a public- -health challenge. Lancet 2006; 367: 2056.

86. US National Academy of Sciences. Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline – a report of the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline and Subcommittee on Upper Reference Levels of Nutrients, Food and Nutrition Board, Institute of Medicine. Washington: National Academy Press, 1998: 1–567.

87. Simpson JL, Bailey LB, Pietrzik K, et al. Micronutrients and women of reproductive potential: required dietary intake and consequences of dietary deficiency or excess. Part I – folate, vitamin B12, vitamin B6. J Matern Fetal Neonatal Med 2010; 23: 1323–1343.

88. Almeida LC, Cardoso MA. Recommendations for folate intake in women: implications for public health strategies. Cad Saúde Pública Rio de Janeiro 2010; 26: 2011–2026.

89. Berry RJ, Bailey L, Mulinare J, et al. Fortification of flour with folic acid. Food Nutr Bull 2010; 31: S22–S35.

90. Persad VL, Van den Hof MC, Dubé JM, Zimmer P. Incidence of open neural tube defects in Nova Scotia after folic acid fortification. CMAJ 2002; 167: 241–245.

91. Liu S, West R, Randell E, et al. A comprehensive evaluation of food fortification with folic acid for the primary prevention of neural tube defects. BMC Pregnancy Childbirth 2004; 4: 20.

92. Alasfoor D, Elsayed MK, Mohammed AJ. Spina bifida an birth outcome before and after fortification of flour with iron and folic acid in Oman. East Mediterr Health J 2010; 16: 533–538.

93. Schneiderka P. Homocysteinémia a folatémia v éře fortifikace folátem. Klin Biochem Metab 2008; 16: 228–231.

94. Figueiredo JC, Grau MV, Haile RW, et al. Folic acid and risk of prostate cancer: results from a randomized clinical trial. J Natl Cancer Inst 2009; 101: 432–435.

95. Fife J, Raniga S, Hider PN, et al. Folic acid supplementation and colorectal cancer risk: a meta-analysis. Colorectal Dis 2011; 13: 132–137.

96. Kim YI. Folate and colorectal cancer: an evidence-based critical review. Mol Nutr Food Res 2007; 51: 267–292.

97. Werler MM, Ahrens KA, Bosco JLF, et al. Use of antiepileptic medications in pregnancy in relation to risks of birth defects. Ann Epidemiol 2011; 21: 842–850.

98. Ogawa Y, Kaneko S, Otani K, et al. Serum folic acid levels in epileptic mothers and their relationship to congenital malformations. Epilepsy Res 1991; 8: 75–78.

99. Sander JWAS, Patsalos PN. An assessment of serum and red blood cell folate concentrations in patients with epilepsy on lamotrigine therapy. Epilepsy Res 1992; 13: 89–92.

100. Kishi T, Fujita N, Eguchi T, et al. Mechanism for reduction of serum folate by antiepileptic drugs during prolonged therapy. J Neurol Sci 1997; 145: 109–112.

101. Quality Standards Subcommittee of the American Academy of Neurology. Practice Parameter: management issues for women with epilepsy (summary statement). Neurology 1998; 51: 944–948.

102. Zahn CA, Morell ML, Collins SD, et al. Management issues for women with epilepsy: a review of the literature. Neurology 1998; 51: 949–956.

103. Wilson RD, Johnson JA, Wyatt P, et al. Pre-conceptional vitamin/folic acid supplementation 2007: the use of folic acid in combination with multivitamin supplement for the prevention of neural tube defects and other congenital anomalies. Obstet Gynaecol Can 2007; 29: 1003–1026.

104. Goh YI, Bollano E, Einarson TR, Koren G. Prenatal multivitamin supplementation and rates of congenital anomalies: a meta-analysis. J Obstet Gynaecol Can 2006; 28: 680–689.

105. Harden CL, Meador KJ, Pennell, PB, et al. Practice parameter update: management issues for women with epilepsy-focus on pregnancy (an evidence-based review): teratogenesis and perinatal outcomes: report of the Quality Standards Subcommittee and Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and American Epilepsy Society. Neurology 2009; 73: 133–141.

106. Kriška M, Ambrózy E, Bada V, et al. Memorix klinickej farmakológie a liekov. Bratislava: Slovak Academy Press, 2006: 1–610.

107. Súhrn charakteristických vlastností lieku Acidum folicum Léčiva. Online: http://www.adcc.sk/web/humanne-lieky/spc/acidum-folicum-leciva-spc-30013.html.

108. Vergel RG, Sanchez LR, Heredero BL, et al. Primary prevention of neural tube defects with folic acid supplementation: Cuban experience. Prenat Diagn 1990; 10: 149–152.

109. Chen G, Song X, Ji Y, et al. Prevention of NTDs with periconceptional multivitamin supplementation containing folic acid in China. Birth Defects Res A Clin Mol Teratol 2008; 82: 592–596.

110. Chan AC, van Essen P, Scott H, et al. Folate awareness and the prevalence of neural tube defects in South Australia, 1966–2007. Med J Aust 2008; 189: 566–569.

111. Thompson SJ, Torres ME, Stevenson RE, et al. Periconceptional multivitamin folic acid use, dietary folate, total folate and risk of neural tube defects in South Carolina. Ann Epidemiol 2003; 13: 412–418.

Labels
Neonatology Paediatrics General practitioner for children and adolescents
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#