#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

DENTAL MODELS CREATED BY INTRAORAL SCANNING AND 3D PRINTING


Authors: M. Šimek
Authors‘ workplace: Stomatologická klinika dětí a dospělých, Univerzita Karlova, 2. lékařská fakulta, a Fakultní nemocnice v Motole, Praha
Published in: Česká stomatologie / Praktické zubní lékařství, ročník 123, 2023, 3, s. 68-76
Category: Review Article
doi: https://doi.org/10.51479/cspzl.2023.005

Overview

Introduction and aim: Dental models are widely used in dentistry. The transmission of oral cavity situation outside patient's mouth brings us information in the field of diagnostics, treatment planning, and the fabrication planning of dental products. Dental models can be used in any dental field. They are particularly linked to prosthodontics, orthodontics, and maxillofacial surgery.

The aim of this article is to report the benefits of the intraoral scanning in conjuction with 3D printing to the reader. Also, it describes their basic principles and presents the most useful technologies of 3D printing for production in dentistry according to the current literature.

Materials and methods: The literature search and survey were focused on intraoral scanning and 3D printing. PubMed, Scopus, and Ebsco databases were used to find the articles. Their applicability in dentistry, the inclusion of a control group, and the age of the article within five years were essential for their subsequent selection.

Conclusion: The included studies show that the technologies of direct intraoral scanning and 3D printing are already clinically usable today, and in the future we can expect their further development for everyday practice.

Keywords:

3D printing – dental models – intraoral scanner


Sources

1. Kamínek M, et al. Ortodoncie. 1. vydání. Praha: Galén; 2014, 45–49.

2. Hubálková H, Krňoulová J. Materiály a technologie v protetickém zubním lékařství. 1. vydání. Praha: Galén; 2009, 135–158.

3. Chochlidakis KM, Papaspyridakos P, Geminiani A, Chen CJ, Feng IJ, Ercoli C. Digital versus conventional impressions for fixed prosthodontics: A systematic review and meta-analysis. J Prosthet Dent. 2016; 116(2): 184–190.e12. doi: 10.1016/j.prosdent.2015.12.017. Epub 2016 Mar 2. PMID: 26946916.

4. Mangano F, Gandolfi A, Luongo G, Logozzo S. Intraoral scanners in dentistry: a review of the current literature. BMC Oral Health. 2017; 17: 149. doi: 10.1186/s12903-017-0442-x

5. Goracci C, Franchi L, Vichi A, Ferrari M. Accuracy, reliability, and efficiency of intraoral scanners for full-arch impressions: a systematic review of the clinical evidence. Eur J Orthod. 2016; 38(4): 422–428. doi: 10.1093/ejo/cjv077. Epub 2015 Oct 20.

6. Zimmermann M, Mehl A, Mörmann WH, Reich S. Intraoral scanning systems – a current overview. Int J Comput Dent. 2015; 18(2): 101–129. English, German. PMID: 26110925.

7. Grünheid T, McCarthy SD, Larson BE. Clinical use of a direct chairside oral scanner: an assessment of accuracy, time, and patient acceptance. Am J Orthop Dentofac Orthod. 2014; 146(5): 673–682. doi:10.1016/j.ajodo.2014.07.023. Epub 2014 Oct 28.

8. Lee SJ, Gallucci G. Digital vs. conventional implant impressions: efficiency outcomes. Clin Oral Implants Res. 2013; 24(1): 111–115. doi: 10.1111/j.1600-0501.2012.02430.x. Epub 2012 Feb 22.

9. Akyalcin S, Dyer DJ, English JD, Sar C. Comparison of 3-dimensional dental models from different sources: diagnostic accuracy and surface registration analysis. Am J Orthod Dentofacial Orthop. 2013; 144(6): 831–837. doi: 10.1016/j.ajodo.2013.08.014

10. Joda T, Brägger U, Gallucci G. Systematic literature review of digital threedimensional superimposition techniques to create virtual dental patients. Int J Oral Maxillofac Implants. 2015; 30(2): 330–337. doi: 10.11607/jomi.3852

11. Lim JH, Park JM, Kim M, Heo SJ, Myung JY. Comparison of digital intraoral scanner reproducibility and image trueness considering repetitive experience. J Prosthet Dent. 2018; 119: 225–232. doi: 10.1016/j.prosdent.2017.05.002. Epub 2017 Jul 8.

12. Imburgia M, Logozzo S, Hauschild U, Veronesi G, Mangano C, Mangano FG. Accuracy of four intraoral scanners in oral implantology: a comparative in vitro study. BMC Oral Health. 2017; 17(1): 92. doi: 10.1186/s12903-017-0383-4

13. Marghalani A, Weber HP, Finkelman M, Kudara Y, El Rafie K, Papaspyridakos P. Digital versus conventional implant impressions for partially edentulous arches: An evaluation of accuracy. J Prosthet Dent. 2018; 119: 574–579. doi: 10.1016/j.prosdent.2017.07.002. Epub 2017 Sep 18.

14. Ender A, Attin T, Mehl A. In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions. J Prosthet Dent. 2016; 115(3): 313–320. doi: 10.1016/j.prosdent.2015.09.011. Epub 2015 Nov 6.

15. Kattadiyil MT, Mursic Z, Airumaih H, Goodacre CJ. Intraoral scanning of hard and soft tissues for partial removable dental prosthesis fabrication. J Posthet Dent. 2014; 112(3): 444–448. doi: 10.1016/j.prosdent.2014.03.022. Epub 2014 May 29.

16. Yilmaz H, et al. Time efficiency and accuracy of threedimensional models versus dental casts: A clinical study. Turk J Orthod. 2019; 32(4): 214–218. doi: 10.5152/TurkJOrthod.2019.19034. eCollection 2019 Dec.

17. Ahmad I, Al-Harbi F. 3D printing in dentistry 2019/2020. 1. vydání. London: Quintessence, 2019, 22–46.

18. Mörmann WH. The evolution of the CEREC system. J Am Dent Assoc. 2006; 137(Suppl.): 7S–13S.

19. Logozzo S, Zanetti EM, Franceschini G, Kilpelä A, Mäkynen A. Recent advances in dental optics – Part I: 3D intraoral scanners for restorative dentistry. Optics Lasers in Engineering. 2014; 54: 203–221.

20. Hack GD, Sebastian B, Panzelt M. Evaluation of the accuracy of six intraoral scanning devices: An in-vitro investigation. ADA Professional Product Rev. 2015; 10: 1–5.

21. Imburgia M, Logozzo S, Hauschild U, Veronesi G, Mangano C, Mangano FG. Accuracy of four intraoral scanners in oral implantology: a comparative in vitro study. BMC Oral Health. 2017; 17(1): 92. doi: 10.1186/s12903-017-0383-4

22. Renne W, Ludlow M, Fryml J, Schurch Z, Mennito A, Kessler R, Lauer A. Evaluation of the accuracy of 7 digital scanners: an in vitro analysis based on 3-dimensional comparisons. J Prosthet Dent. 2017; 118(1): 36–42. doi: 10.1016/j.prosdent.2016.09.024. Epub 2016 Dec 23.

23. Roig E, Garza LC, Álvarez-Maldonado N, Maia P, Costa S, Roig M, Espona J. In vitro comparison of the accuracy of four intraoral scanners and three conventional impression methods for two neighboring implants. PLoS ONE. 2020; 15(2): e0228266. doi: 10.1371/journal.pone.0228266. eCollection 2020.

24. Nedelcu R, Olsson P, Nyström I, Thor A. Finish line distinctness and accuracy in 7 intraoral scanners versus conventional impression: an in vitro descriptive comparison. BMC Oral Health. 2018; 18: 27. doi: 10.1186/s12903-018-0489-3

25. Nedelcu R, Persson ASK. Scanning accuracy and precision in 4 intraoral scanners: an in vitro comparison based on 3-dimensional analysis. J Prosthet Dent. 2014; 112: 1461–1471. doi: 10.1016/j.prosdent.2014.05.027. Epub 2014 Aug 16.

26. Güth JF, Runkel C, Beuer F, Stimmelmayr M, Edelhoff D, Keul C. Accuracy of five intraoral scanners compared to indirect digitalization. Clin Oral Investig. 2017; 21(5): 1445–1455. doi: 10.1007/s00784-016-1902-4. Epub 2016 Jul 12.

27. Kašparová M, Halamová S, Dostálová T, Procházka A. Intra-oral 3D scanning for the digital evaluation of dental arch parameters. Appl Sci. 2018; 8: 1838.

28. Zarone F, Ruggiero G, Ferrari M, Mangano F, Joda T, Sorrentino R. Comparison of different intraoral scanning techniques on the completely edentulous maxilla: An in vitro 3-dimensional comparative analysis. J Prosthet Dent. 2020; 124: e1-e8. doi: 10.1016/j.prosdent.2020.07.017. Epub 2020 Oct 24.

29 Tsirogiannis P, Reissmann DR, Heydecke G. Evaluation of the marginal fit of single-unit, complete-coverage ceramic restorations fabricated after digital and conventional impressions: a systematic review and meta-analysis. J Prosthet Dent. 2016; 16(3): 328-335. doi: 10.1016/j.prosdent.2016.01.028. Epub 2016 Apr 7.

30. Oberoi G, Nitsch S, Edlmayer M, Janijć K, Müller AS, Agis H. 3D-Encompassing the fact of dentistry. Front Bioeng Biotechnol. 2018; 6: 172. doi: 10.3389/fbioe.2018.00172. eCollection 2018.

31. Wu H, et al. Recent developments in polymers/polymer nanocomposites for additive manufacturing. Progress in Materials Science. 2020; 111: 100638.

32. Jockusch J, Özcan M. Additive manufacturing of dental polymers: an overview on processes, materials and applications. Dent Mater J. 2020;39(3):345-354. doi: 10.4012/dmj.2019-123. Epub 2020 Feb 7.

33. Jones R, Haufe P, Sells E, et al. RepRap – the replicationg rapid prototyper. Robotica. 2011; 29: 177–191.

34. Chia HN, Wu BM. Recent advantages in 3D printing of biomaterials. J Biol Eng. 2015; 9: 4.

35. Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020; 5: 110–115. doi: 10.1016/j.bioactmat.2019.12.003. eCollection 2020 Mar.

36. Stříteský O, Průša J, Bach M. Základy 3D tisku s Josefem Průšou. 1. vydání. Praha: Prusa Research; 2019.

37. Schaub DA, Chu KR, Montgomery DC. Optimizing stereolithography throughput. J Manuf Syst. 1997; 16(4): 18–27.

38. Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A, Samulski ET, DeSimone JM. Additive manufacturing. Continuous liquid interface production of 3D objects. Science. 2015; 347(6228): 1349–1352. doi: 10.1126/science.aaa2397. Epub 2015 Mar 16. PMID: 25780246.

39. Fernandez-Vicente M, Caller W, Ferrandiz S, Conejero A. Effect of infill parameters on tensile mechanical behavior in deskop 3D printing. 3D printing and additive manufacturing. 2016; 3(3): 183–192. doi: 10.3390/polym12122962

40. Mangano F, Chambrone L, van Noort R, Miller C, Hatton P, Mangano C. Direct metal laser sintering titanium dental implants: a review of the current literature. Int J Biomater. 2014; 2014: 461534. doi: 10.1155/2014/461534. Epub 2014 Dec 1.

41. Camardella LT, de Vasconcellos Vilella O, Breuning H. Accuracy of printed dental models made with 2 prototype technologies and different designs of model bases. Am J Orthod Dentofacial Orthop. 2017; 151(6): 1178–1187. doi: 10.1016/j.ajodo.2017.03.012

42. Kim SY, et al. Precision and trueness of dental models manufactured with different 3-dimensional printing techniques. Am J Orthod Dentofacial Orthop. 2018; 153: 144-153. doi: 10.1016/j.ajodo.2017.05.025

43. Brown GB, Currier GF, Kadioglu O, Kieri JP. Accuracy of 3-dimensional printed dental models reconstructed from digital intraoral impressions. Am J Orthod Dentofacial Orthop. 2018; 154: 733–739. doi: 10.1016/j.ajodo.2018.06.009

44. Sherman SL, Kadioglu O, Currier GF, Kierl JP, Li J. Accuracy of digital light processing printing of 3-dimensional dental models. Am J Orthod Dentofacial Orthop. 2020; 157: 422–428. doi: 10.1016/j.ajodo.2019.10.012

45. Erickson DM, et al. An opinion survey of reported benefits from the use of stereolithographic models. J Oral Maxillofac Surg. 1999; 57; 1040–1043. doi: 10.1016/s0278-2391(99)90322-1

46. Moztarzadeh O, Hrušák D, Bolek L, Bolek M. On site 3D printing in oral and maxillofacial surgery. Plzeň. Lék Sborník. 81, 2015: 29–32.

47. Methani MM, Revilla-León M, Zandinejad A. The potential of additive manufacturing technologies and their processing parameters for the fabrication of all-ceramic crowns: A review. J Esthet Restor Dent. 2020; 32(2): 182–192. doi: 10.1111/jerd.12535. Epub 2019 Nov 7.

48. Ahmad I, Al-Harbi F. 3D printing in dentistry 2019/2020. 1. vydání. London: Quintessence, 2019, 136–153.

49. Azari A, Nikzad S. The event of rapid prototyping in dentistry: a review. Rapid Prototype J. 2009; 15: 216–225.

50. Byun C, Kim C, Cho S, Baek SH, Kim G, Kim SG, Kim SY. Endodontic treatment of an anomalous anterior tooth with the aid of a 3-dimensional printed physical tooth model. J Endod. 2015; 41(6): 961–965. doi: 10.1016/j.joen.2015.01.016. Epub 2015 Feb 27.

51. Keating AP, Knox J, Bibb R, Zhurov Al. A comparison of plaster, digital and reconstructed study model accuracy. J Orthod. 2008; 35: 191–201. doi: 10.1179/146531207225022626

52. Creekmore TD, Kunik RL. Straight wire: the next generation. Am J Orthod Dentofacial Orthop. 1993; 104(1): 8–20. doi: 10.1016/0889-5406(93)70023-H

53. Graf S, Cornelis MA, Hauber Gameiro G, Cattaneo PM. Computer-aided design and manufacture of hyrax devices: Can we really go digital? Am J Orthod Dentofacial Orthop. 2017; 152(6): 870–874. doi: 10.1016/j.ajodo.2017.06.016

54. Edelmann A, English JD, Chen SJ, Kasper FK. Analysis of the thickness of 3-dimensionalprinted orthodontic aligners. Am J Orthod Dentofacial Orthop. 2020; 158: e91–e98. doi: 10.1016/j.ajodo.2020.07.029

55. Jindal P, Juneja M, Siena FL, Bajaj D, Breedon P. Mechanical and geometric properties of thermoformed and 3D printed clear dental aligners. Am J Orthod Dentofacial Orthop. 2019; 156(5): 694–701. doi: 10.1016/j.ajodo.2019.05.012.

56. Šrubař M, Dostálová T, Hofmanová P, Foltán R, Eliášová H. Úvod do 3D plánování ortognátních operací. 3D simulace ortognátní operace v programu Dolphin Imaging 3D. Čes stomatol Prakt zubní lék. 2015; 115(2): 36–45. doi: 10.51479/cspzl.2015.007

57. Savková N, Harvan Ľ, Jusku A, Saygili S, Jezdinská K, Hulvert J. Souhrn poznatků o 3D tisku a jeho využití v zubním lékařství. Čes stomatol Prakt zubní lék. 2021; 121(2): 55–64. doi: 10.51479/cspzl.2021.008

Labels
Maxillofacial surgery Orthodontics Dental medicine
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#