#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Celkové intravenózne anestetiká – farmakodynamika, farmakokinetika a chirálne vlastnosti


Authors: Ružena Čižmáriková;  Ladislav Habala;  Mário Markuliak
Authors‘ workplace: Farmaceutická fakulta UK Katedra chemickej teórie liečiv
Published in: Čes. slov. Farm., 2023; 72, 155-164
Category: Review Articles
doi: https://doi.org/10.5817/CSF2023-4-155

Overview

In continuation of our published review on general inhalational anesthetics, the current article presents a survey of intravenous agents for general anaesthesia. From chemical point of view these compounds belong to structurally diverse categories, such as barbiturates − thiopental (Sodium pentothal®, Trapanal®, Pentothal®), methohexital (Brevital®), and hexobarbital (Evipan®, Hexenal®, Citopan®, Tobinal®); non-barbiturate derivatives − ketamine (Ketalar® Ketaset®), esketamine (Ketanest®), and etomidate (Amidate®, Hypnomidate®), phenolic derivatives − propofol (Diprivan®); steroid derivatives – mixture of alfadolone and alfaxalone (Althesin® in human and Saffan® in veterinary anesthesia); and derivatives of phenylacetic acid − propanidid (Epontol®, Sombrevin®). Most of these compounds are chiral, with the exception of propofol and propanidid. Apart from etomidate and esketamine, they are used in the form of their racemates. Besides their characteristics and mechanism of action, attention is centred also on their chiral properties.

Keywords:

pharmacokinetics – pharmacodynamics – general anesthetics – chirality – stereochemistry – intravenous anesthetics


Sources
  1. Lincová D., Farghali H., et al. Základní a aplikovaná far- makologie. 2. vydání. Praha: Galén 2007.
  2. Brodie M. J., Kwan P. Current position of phenobarbital in epilepsy and its future. Epilepsia 2012; 53 (8), 40−46.
  3. Bellante F., Legros B., Depondt Ch., Créteur J., Tacco- ne F. S., Gaspard N. Midazolam and thiopental for the treatment of refractory statu s epilepticus: a retrospecti- ve comparison of efficacy and safety J. Neurol. 2016; 263, 799–806.
  4. Kadiyala P. K., Kadiyala L. D. Anaesthesia for electro- convulsive therapy: An overview with an update on its role in potentiating electroconvulsive therapy. Indian J. Anaesth. 2017; 61(5), 373−380.
  5. Jindal S., Sidhu G. K., Kumari S., Kamboj P., Chauhan R. Etomidate versus propofol for motor seizure dura- tion during modified electroconvulsive therapy. Anesth. Essays Res. 2020; 14(1), 62–67.
  6. Mehta D., Palta S., Gupta N., Saroa R. Comparison of effect of etomidate with propofol on hemodynamics du- ring modified electroconvulsive therapy. J. Anaesthesiol. Clin. Pharmacol. 2022; 38(1), 104−110.
  7. Intravenózní a inhalační analgetika a anestetika. www. porodnice.cz (4. 3. 2023)
  8. Jean-Michel V., Caulier T., Delannoy P. Y., Meybeck A., Georges H. Thiopental as substitute therapy for critically ill patients with COVID-19 requiring mechanical ventilation and prolonged sedation. Med. Intensiva 2022; 46(1), 58–61.
  9. Čižmáriková R., Habala L., Markuliak M. Celkové inha- lačné anestetiká – farmakodynamika, farmakokinetika a chirálne vlastnosti. Čes. slov. Farm. 2021; 70, 7–17.
  10. Weir C. J., Mitchell S. J., Lambert J. J. Role of GABA A receptor subtypes in the behavioural effects of intrave- nous general anaesthetics. Br. J. Anaesth. 2017; 119 (1), 67–75.
  11. Dickinson R., de Sousa S. L. M., Lieb W. R., Franks N. P. Selective synaptic actions of thiopental and its enantio- mers. Anesthesiology 2002; 96(4), 884–892.
  12. Cordato D. J., Chebib M., Mather L. E., Herkes G. K., Johnston G. A. Stereoselective interaction of thiopento- ne enantiomers with the GABA(A) receptor. Br. J. Pharma- col. 1999; 128 (1), 77–82.
  13. Berg-Johnsen J. Action mechanism of intravenous ane- sthetics. Tidsskr. Nor. Laegeforen 1993; 113(5), 565–568.
  14. Kitayama M., Hirota K., Kudo M., Kudo T., Ishihara H., Matsuki A. Inhibitory effects of intravenous anaesthe- tic agents on K(+)-evoked glutamate release from rat cerebrocortical slices. Involvement of voltage-sensi- tive Ca(2+) channels and GABA(A) receptors. Naunyn Schmiedebergs Arch. Pharmacol. 2002; 366(3), 246–253.
  15. Quibell R., Prommer E. E., Mihalyo M., Twycross R., Wilcock A. Therapeutic reviews: Ketamine. J. Pain Ma- nag. 2011; 41(3), 640–649.
  16. Kim J. J., Gharpure A., Teng J., Zhuang Y., Howard R. J., Zhu S., Noviello C. M., Walsh R. M. Jr., Lindahl E., Hibbs R. E. Shared structural mechanisms of general anaesthe- tics and benzodiazepines. Nature 2020; 585(7824), 303–308.
  17. Coates K. M., Mather L. E., Johnson R., Flood P. Thio- pental is a competitive inhibitor at the human alpha7 nicotinic acetylcholine receptor. Anesth. Analg. 2001; 92(4), 930−933.
  18. Downie D. L., Franks N. P., Lieb W. R. Effects of thiopen- tal and its optical isomers on nicotinic acetylcholine re- ceptors. Anesthesiology 2000; 93(3), 774–783.
  19. Dickinson R., de Sousa S. L., Lieb W. R., Franks N. P. Selective synaptic actions of thiopental and its enantio- mers. Anesthesiology 2002; 96(4), 884−892.
  20. Yagmurdur H., Ayyildiz A., Karaguzel E., Ogus E., Su- rer H., Caydere M., Nuhoglu B. C., Germiyanoglu C. The preventive effects of thiopental and propofol on tes- ticular ischemia-reperfusion injury. Acta Anaesth. Scand. 2006; 50(10), 1175−1317.
  21. Štourač P. Intravenozní anestetika. https://www.akutne.cz/res/file/prezentace/anesteziologie/intrave nozni-anestetika.ppt (4. 3. 2023).
  22. Celková anestezie. https://www.wikiskripta.eu/w/Celkov%C3%A1_anestezie (4. 3. 2023).
  23. Intravenózní anestetika. https://is.muni.cz/el/med/jaro2010/vsal081/um/anestetika.ppt (4. 3. 2023).
  24. Thiopental.   https://pubchem.ncbi.nlm.nih.gov/compound/Thiopental (4. 3. 2023).
  25. Thiopental VUAB 0,5 g. https://www.adc.sk/databazy/produkty/detail/thiopental-vuab-0-5-g-359017.html (4. 3.2023).
  26. Thiopental VUAB 1,0 g. https://www.adc.sk/databazy/produkty/detail/thiopental-vuab-1-0-g-955524.html (4.3. 2023).
  27. Mather L. E., Edwards S. R. Chirality in anaesthesia –ropivacaine, ketamine and thiopentone. Curr. Opin. Anaesthesiol. 1998; 11(4), 383−390.
  28. Cordato D. J., Gross A. S., Herkes G. K., Mather L. E. Pharmacokinetics of thiopentone enantiomers fol- lowing intravenous injection or prolonged infusion of rac-thiopentone. Br. J. Clin. Pharmacol. 1997; 43(4), 355−362.
  29. Burke D., Henderson D. J. Chirality: a blueprint for the future. Br. J. Anaesth. 2002; 88(4), 563−576.
  30. Cordato D. J., Mather L. E., Gross A. S., Herkes G. K. Pharmacokinetics of thiopental enantiomers during and following prolonged high-dose therapy. Anesthesiology 1999; 91(6), 1693−1702.
  31. Haley T. J., Gidley J. T. Pharmacological comparison of R(+), S(–) and racemic thiopentone in mice. Eur. J. Phar- macol. 1976; 36, 211−214.
  32. Russo H., Bressolle F. Pharmacodynamics and phar- macokinetics of thiopental. Clin. Pharmacokinet. 1998; 35(2), 95−134.
  33. Nguyen K. T., Stephens D. P., McLeish M. J., Crankshaw D. P., Morgan D. J. Pharmacokinetics of thiopental and pen- tobarbital enantiomers after intravenous administration of racemic thiopental. Anesth. Analg. 1996; 83, 552−558.
  34. Mather L. E., Edwards S. R., Duke C. C., Cousins M. J. Enantioselectivity of thiopental distribution into the cen- tral neural tissue of rats: an interaction with halothane. Anesth. Analg. 1999; 89(1), 230−235.
  35. Winters W. D., Spector E., Wallach D. P., Shideman F. E. Metabolism of thiopental-S35 and thiopental-2-C14 by a rat liver mince and identification of pentobarbital as a major me- tabolite. J. Pharmacol. Exp. Ther. 1955; 114(3), 343–357.
  36. Palmer K. M., Fowler M. S., Wall M. E., Rhodes L. S., Waddell W. J., Baggett B. The metabolism of R(+)- and RS-pentobarbital. J. Pharmacol. Exp. Ther. 1969; 170(2), 355−363.
  37. Palmer K. H., Fowler M. S., Wall M. E. Metabolism of op- tically active barbiturates. II. S-(-)-pentobarbital. J. Phar- macol. Exp. Ther. 1970; 175(1), 38−41.151-83-7(Methohexital) ChemicalBook. https:// www.chemicalbook.com/ProductChemicalProper- tiesCB1492534_EN.htm (4. 3. 2023).
  38. Methohexital.  https://pubchem.ncbi.nlm.nih.gov/com-pound/methohexital (4. 3. 2023).
  39. Schwartz R. D., Jackson J. A., Weigert D., Skolnick P., Paul S. M. Characterization of barbiturate-stimulated chloride efflux from rat brain synaptoneurosomes. J. Neurosci. 1985; 5(11), 2963−2970.
  40. Allan A. M., Harris R. A. Anesthetic and convulsant bar- biturates alter gamma-aminobutyric acid-stimulated chloride flux across brain membranes. J. Pharmacol. Exp. Ther. 1986; 238(3), 763–768.
  41. Welles J. S., McMahon R. E., Doran W. J. The metabo- lism and extretion of methohexital in the rat and dog. J. Pharmacol. Exp. Ther. 1963; 139(2), 166–171.
  42. Hexobarbital.  https://www.chemicalbook.com/ChemicalProductProperty_EN_CB3744680.htm (4. 3. 2023).
  43. Hexobarbital.  https://pubchem.ncbi.nlm.nih.gov/compound/Hexobarbital (4. 3. 2023).
  44. Hexobarbital. https://go.drugbank.com/drugs/DB01355 (4. 3. 2023).
  45. Tseilikman V. E., Kozochkin D. A., Manukhina E. B., Downey H. F., Tseilikman O. B., Misharina M. E., et al. Duration of hexobarbital-induced sleep and monoami- ne oxidase activities in rat brain: Focus on the behavioral activity and on the free-radical oxidation. Gen. Physiol. Biophys. 2016; 35(2), 175–183.
  46. Wahlstrom G. Differences in anaesthetic properties between the optical antipodes of hexobarbital in the rat. Life Sci. 1966; 5, 1781–1790.
  47. Takenoshita R., Toki S. [New aspects of hexobarbital metabolism: stereoselective metabolism, new metabolic pathway via GSH conjugation, and 3-hydroxyhexobarbital dehydrogenases]. Yakugaku Zasshi. 2004; 124(12), 857–871.550−558.
  48. Etomidate.    https://www.chemicalbook.com/ChemicalProductProperty_EN_CB4113298.htm (4. 3. 2023).
  49. Godefroi E. F., van der Eijcken C. A. M. Imidazole car- boxylates. US Patent 3354173.
  50. Godefroi E. F, Janssen P. A. J., Van der Eycken C. A. M., Van Heertum A. H. M. T., Niemegeers C. J. E. DL-(1- arylalkyl)imidazole-5-carboxylate esters: A novel type of hypnotic agents. J. Med. Chem. 1965; 56, 220–223.
  51. Morgan M., Lumley J., Whitwam J. G. Etomidate, a new water-soluble non-barbiturate intravenous induction agent. Lancet 1975; 321, 955–956.
  52. Giese J. L., Stanley T. H. Etomidate: A new intravenous anesthetic induction agent. Pharmacotherapy 1983; 3,251–258.
  53. Forman S. A. Clinical and molecular pharmacology of etomidate. Anesthesiology 2011; 114(3), 695–707.
  54. Al Ali M. S., Musa A., Hamadeh W., Seddik E. Etomida- te shows prospect as an anti-arrhythmic drug conferring safe sedation and sinus conversion simultaneously. Du- bai Med. J. 2020; 3, 105–108.
  55. Valk B. I., Struys M. M. R. F. Etomidate and its analogs: A review of pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 2021; 60, 1253–1269.
  56. Saito K., Dan H., Masuda K., Katsu T., Hanioka N., Ya- mamoto S., Miyano K., Yamano S., Narimatsu S. Ste- reoselective hexobarbital 3’-hydroxylation by CYP2C19 expressed in yeast cells and the roles of amino acid re- sidues at positions 300 and 476. Chirality 2007; 19(7),
  57. Tomlin S. L., Jenkins A., Lieb W. R., Franks N. P. Stereo- selective effects of etomidate optical isomers on γ-ami- nobutyric acid type A receptors and animals. Anesthes- iology 1998; 88, 708–717.
  58. Janssen P. A., Niemegeers C. J., Schellekens K. H., Lenaerts F. M. Etomidate, R-(+)-ethyl-1-(-methyl- benzyl)imidazole-5-carboxylate (R 16659), a potent, short-acting and relatively atoxic intravenous hyp- notic agent in rats. Arzneimittelforschung 1971; 21, 1234–1243.
  59. Kaneda K., Yamashita S., Woo S., Han T. H. Population pharmacokinetics and pharmacodynamics of brief eto- midate infusion in healthy volunteers. J. Clin. Pharmacol. 2011; 51(4), 482–491.
  60. Carlos R., Calvo R., Erill S. Plasma protein binding of etomidate in patients with renal failure or hepatic cirrho- sis. Clin. Pharmacokinet. 1979; 4, 144–148.
  61. Heykants J. J. P., Brugmans J., Doenicke A. On the pharmacokinetics of etomidate (R26490) in human volunteers: Plasma levels, metabolism, and excretion. (R26490/1 Janssen Research Product Information Servi- ce), Clinical Research Report 1975; 4.
  62. Critical review of ketamine - WHO Critical Review Report. https://www.scribd.com/doc/77236539/34th-ECDD-20 06-Critical-Review-of-Ketamine (4. 3. 2023).
  63. Ketamine abuse. https://www.drugs.com/illicit/ketamine.html (4. 3. 2023).
  64. Ketamine: What is it, uses, treatments, effects, and more effects. https://www.medicalnewstoday.com/ articles/302663 (4. 3. 2023).
  65. Hakey P., Ouellette W., Zubieta J., Korter T. (S)-(+)-Ke- tamine hydrochloride. Acta Cryst. 2008; E64, o1487.
  66. O’Neil, M. J. (ed.). The Merck Index – An Encyclopedia of Chemicals, Drugs, and Biologicals. Cambridge: Royal Society of Chemistry 2013.
  67. Tang Y., Liu R., Zhao P. Ketamine: An update for obstet- ric anesthesia. Transl. Perioper. Pain Med. 2017; 4, 1–12.
  68. Barrett W., Buxhoeveden M., Dhillon S. Ketamine: a versatile tool for anesthesia and analgesia. Curr. Opin. Anaesthesiol. 2020; 33(5), 633−638.
  69. Arnbjerg J. Clinical use of ketamine-xylazine for anaesthesia in the cat. Nord. Vet. Med. 1979; 31(4), 145– 154.
  70. Schmidt-Oechtering G. U., Alef M., Röcken M. Ane- sthesia of horses with xylazine and ketamine. 2. Anesthe- sia in adult horses. Tierarzt. Prax. 1990; 18(1), 47−52.
  71. Lin H. C., Passler T., Wilborn R. R., Taintor J. S., Caldwe- ll F. J. A review of the general pharmacology of ketamine and its clinical use for injectable anaesthesia in horses Equine veterinary education 2015; 27(3), 146−155.
  72. Ibrahim A. Evaluation of total intravenous anesthesia by ketamine-xylazine constant rate infusion in dogs: A novel preliminary dose study. Vet. Med. Open J. 2017; 2(2), 38–44.
  73. Baumgartner C., Bollerhey M., Ebner J., Laacke-Sin- ger L., Schuster T., Erhardt W. Effects of ketamine-xyla- zine intravenous bolus injection on cardiovascular func- tion in rabbits. Can. J. Vet. Res. 2010; 74(3), 200−208.
  74. Abdollahpour A., Saffarieh E., Zoroufchi B. H. A re- view on the recent application of ketamine in management of anesthesia, pain, and health care. J. Family Med. Prim. Care 2020; 9(3), 1317–1324.
  75. Hana Z., Abdulla S., Alam A., Ma D. Ketamine: Old drug but new use for neuropathic pain. Transl. Perioper. Pain Med. 2018; 5, 1–13.
  76. Vadivelu N., Schermer E., Kodumudi V., Belani K., Urman R. D., Kaye A. D. Role of ketamine for analgesia in adults and children. J. Anaesthesiol. Clin. Pharmacol. 2016; 32(3), 298–306.
  77. Pourmand A., Mazer-Amirshahi M., Royall C., Alhawas R., Shesser R. Low dose ketamine use in the emergency department, a new direction in pain management. Am. J. Emerg. Med. 2017; 35(6), 918–921.
  78. Niesters M., Martini Ch., Dahan A. Ketamine for chro- nic pain: risks and benefits. Br. J. Clin. Pharmacol. 2014; 77(2), 357−367.
  79. Culp C., Kim H. K., Abdi S. Ketamine use for cancer and chronic pain management. Front. Pharmacol. 2021; 11, 599721.
  80. Hashimoto K. Ketamine’s antidepressant action: beyond NMDA receptor inhibition. Expert Opin. Ther. Targets. 2016; 20(11), 1389–1392.
  81. Berman R. M., Cappiello A., Anand A., Oren D. A., He- ninger G. R., Charney D.S., Krystal J. H. Antidepressant effects of ketamine in depressed patients. Biol. Psychiat- ry 2000; 47, 351–354.
  82. Marcantoni W. S., Akoumba B. S., Wassef M., Mayrand J., Lai H., Devantoy S. R., Beauchamp S. A systematic review and meta-analysis of the efficacy of intravenous ketamine in- fusion for treatment resistant depression: January 2009 – Janu- ary 2019. J. Affect. Disord. 2020; 277, 831–841.
  83. Witt K., Potts J., Hubers A., Grunebaum M. F., Mur- rough J. W., Loo C., Cipriani A., Hawton K. Ketamine for suicidal ideation in adults with psychiatric disorders: A systematic review and meta-analysis of treatment trials. Australian & New Zealand Journal of Psychiatry 2020; 54(1), 29–45.
  84. Wilkowska A., Szałach L., Cubala W. J. Ketamine in bi- polar disorder: A review. Neuropsychiatr. Dis. Treat. 2020; 16, 2707−2717.
  85. Das R. K., Gale G., Walsh K., Hennessy V. E., Iskandar G., Mordecai L. A., Brandner B., Kindt M., Curran H. V., Kamboj S. K. Ketamine can reduce harmful drinking by pharmacologically rewriting drinking memories. Nat. Commun. 2019; 10, 5187.
  86. Krupitsky E., Burakov A., Romanova T., Dunaevsky I., Strassman R., Grinenko A. Ketamine psychotherapy for heroin addiction: immediate effects and two-year fol- low-up. J. Subst. Abuse Treat. 2002; 23(4), 273−283.
  87. Niquet J., Baldwin R., Norman K., Suchomelova L., Lumley L., Claude G., Wasterlain C. G. Simultaneous triple therapy for the treatment of status epilepticus. Ne- urobiol. Dis. 2017; 104, 41–49.
  88. Rosati A., De Masi S., Guerrini R. Ketamine for refrac- tory status epilepticus: A systematic review. CNS Drugs 2018; 32, 997–1009.
  89. Okon T. Ketamine: an introduction for the pain and pal- liative medicine physician. Pain Physician 2007; 10(3), 493–500.
  90. Goldman N., Frankenthaler M., Klepacz L. The efficacy of ketamine in the palliative care setting: A comprehen- sive review of the literature. J. Palliat. Med. 2019; 22(9), 1154−1161.
  91. Dayton P. G., Stiller R. L., Cook D. R., Perel J. M. The binding of ketamine to plasma proteins: emphasis on human plasma. Eur. J. Clin. Pharmacol. 1983; 24, 825–831.
  92. Zhao X., Venkata S. L., Moaddel R., Luckenbaugh D. A., Brutsche N. E., Ibrahim L., Zarate C. A. Jr., Mager D. E., Wainer I. W. Simultaneous population pharmacoki- netic modelling of ketamine and three major metaboli- tes in patients with treatment-resistant bipolar depres- sion. Br. J. Clin. Pharmacol. 2012; 74(2), 304–314.
  93. Zanos P., Moaddel R., Morris P. J., Riggs L. M., HighlandJ. N., Georgiou P., Pereira E. F. R., Albuquerque E. X., Thomas C. J., Zarate, Jr. C. A., Gould T. D. Ketamine and ketamine metabolite pharmacology: Insights into therapeutic mechanisms. Pharmacol. Rev. 2018; 70(3), 621–660.
  94. Kamp J., Jonkman K., van Velzen, M., Aarts L., Nies- ters M., Dahan A., Olofsen E. Pharmacokinetics of ke- tamine and its major metabolites norketamine, hydroxy- norketamine, and dehydronorketamine: a model-based analysis. Br. J. Anaesth. 2020; 125(5), 750e761.
  95. Dinis-Oliveira R. J. Metabolism and metabolomics of ketamine: a toxicological approach. Forensic Sci. Res. 2017; 2, 2–10.
  96. Hijazi Y., Boulieu R. Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-demethylation of ketamine in human liver microsomes. Drug Metab. Dispos. 2002; 30, 853–858.
  97. Himmelseher S., Pfenninger E. The clinical use of S-(+)-ketamine a determination of its place. Anästhesio- logie, Intensivmedizin, Notfallmedizin, Schmerztherapie 1998; 33(12), 764–770.
  98. Zielmann S., Kazmaier S., Schnüll S., Weyland A. S-(+)-Ketamin und Kreislauf [S-(+)-Ketamine and circula- tion]. Anaesthesist 1997; 46(1), S43–S46.
  99. Ihmsen H., Geisslinger G., Schüttler J. Stereoselective pharmacokinetics of ketamine: R(–)-ketamine inhibits the elimination of S(+)-ketamine. Clin. Pharmacol. Ther. 2001; 70(5), 431–438.
  100. Nishimura M., Sato K. Ketamine stereoselectively in- hibits rat dopamine transporter. Neurosci. Lett. 1999; 274(2), 131–134.
  101. Turner E. H. Esketamine for treatment-resistant depres- sion: seven concerns about efficacy and FDA approval. Lancet Psychiat. 2019; 6(12), 977–979.
  102. Wajs E., Aluisio L., Holder R., Daly E., Lane R., Lim P., et al. Esketamine nasal spray plus oral antidepressant in patients with treatment-resistant depression: Asses- sment of long-term safety in a phase 3, open-label study (SUSTAIN-2). J. Clin. Psychiatry 2020; 81(3), 19m12891.
  103. Canuso C. M., Ionescu D. F., Li X., Qiu X., Lane R., Tur- koz I., Nash A. I., Lopena T. J., Fu D. J. Esketamine nasal spray for the rapid reduction of depressive symptoms in major depressive disorder with acute suicidal idea- tion or behavior. J. Clin. Psychopharmacol. 2021; 41(5), 516–524.
  104. Lewis, R. J., Sr. (Ed.). Hawley’s Condensed Chemical Dictio- nary. 13th ed. New York: John Wiley & Sons, Inc. 1997; 391.
  105. Hemmings H. C., Mackie K. The rivers of Lethe and Mnemosyne converge: propofol and memory consolida- tion. Anesthesiology 2011; 114(6), 1277−1279.
  106. Trapani G., Altomare C., Liso G., Sanna E., Biggio G. Propofol in anesthesia. Mechanism of action, structu- re-activity relationships, and drug delivery. Curr. Med. Chem. 2000; 7(2), 249−271.
  107. Vasileiou I., Xanthos T., Koudouna E., Perrea D., Klo- naris Ch., Katsargyris A., Papadimitriou L. Propofol: a review of its non-anaesthetic effects. Eur. J. Pharmacol. 2009; 605(1–3), 1−8.
  108. Murphy P. G., Myers D. S., Davies M. J., Webster N. R., Jones J. G. The antioxidant potential of propofol (2,6-di- isopropylphenol) Br. J. Anaesth. 1992; 68, 613–618.
  109. Petros A. J., Bogle R. G., Pearson A. D. Propofol stimu- lates nitric oxide release from cultured porcine aortic en- dothelial cells. Br. J. Pharmacol. 1993; 109, 6–7.
  110. Altmayer P., Buch U., Buch H. P. Propofol binding to human blood proteins. Drug Research. 1995; 45(10), 1053–1056.
  111. Guitton J., Buronfosse T., Desage M., Flinois J. P., Perdrix J. P., Brazier J. L., Beaune P. Possible involvement of multiple human cytochrome P450 isoforms in the liver metabolism of propofol. Br. J. Anaesth. 1998; 80, 788–795.
  112. Dinis-Oliveira R. J. Metabolic profiles of propofol and fospropofol: Clinical and forensic interpretative aspects. Biomed. Res. Int. 2018; 2018, 6852857.
  113. Fechner J., Ihmsen H., Jeleazcov C., Schüttler J. Fospropofol disodium, a water-soluble prodrug of the in- travenous anesthetic propofol (2,6-diisopropylphenol). Expert. Opin. Investig. Drugs 2009; 18(10), 1565–1571.
  114. Welliver M., Rugari S. M. New drug, fospropofol diso- dium: a propofol prodrug. AANA J. 2009; 77(4), 301–308.
  115. Maas A., Maier C., Iwersen-Bergmann S., Madea B., Hess C. Simultaneous extraction of propofol and propo- fol glucuronide from hair followed by validated LC–MS/ MS analyses. J. Pharm. Biomed. Anal. 2017; 146, 236–243.
  116. Alfaxalone. https://pubchem.ncbi.nlm.nih.gov/compound/Alfaxalone (4. 3. 2023).
  117. Alfadolone acetate. https://pubchem.ncbi.nlm.nih.gov/ compound/Alfadolone-acetate (4. 3. 2023).
  118. Martinez-Botella G., Ackley M. A., Salituro F. G., Do- herty J. J. Natural and synthetic neuroactive steroid modulators of GABAA and NMDA receptors. Annu. Rep. Med. Chem. 2014; 49, 27–42.
  119. Seljeset S., Laverty D., Smart T. G. Inhibitory neurosteroids and the GABAA receptor. Adv. Pharmacol. 2015; 72, 165–187.
  120. Alvarez L. D., Pecci A. Structure and dynamics of neu- rosteroid binding to the α 1 β 2 γ 2 GABAA receptor. J. Ste- roid. Biochem. Mol. Biol. 2018; 182, 72–80.
  121. Cornet W. T., Popescu D. T. Althesin (alphadione, CT 1341) a ’new’ induction agent for anesthesia. Arch. Chir. Neerl. 1977; 29(2), 135–147.
  122. Kharasch E. D., Hollmann M. W. Steroid anesthesia revi- sited: Again. Anesth. Analg. 2015; 120(5), 983−984.
  123. Towler C. M., Garrett R. T., Sear J. W. Althesin infusions for maintenance of anaesthesia. Anaesthesia 1982; 37, 428–439.
  124. Sear J. W. Steroid anesthetics: old compounds, new dru- gs. J. Clin. Anesth. 1996; 8(3 Suppl), 91S–98S.
  125. Manzella F. M., Covey D. F., Jevtovic-Todorovic V., Todorovic S. M. Synthetic neuroactive steroids as new sedatives and anaesthetics: Back to the future. J. Neuro- endocrinol. 2022; 34(2), e13086.
  126. Goodchild C. S., Serrao J. M., Kolosov A., Boyd B. J. Alphaxalone reformulated: A water-soluble intravenous anesthetic preparation in sulfobutyl-ether-β-cyclodex- trin. Anesth. Analg. 2015, 120(5), 1025–1031.
  127. Muir W., Lerche P., Wiese A., Nelson L., Pasloske K., Whittem T. The cardiorespiratory and anesthetic effects of clinical and supraclinical doses of alfaxalone in cats. Vet. Anaesth. Analg. 2009; 36, 42−54.
  128. Tamura J., Ishizuka T., Fukui S., Oyama N., Kawase K., Miyoshi K., Sano T., Pasloske K., Yamashita K. The pharmacological effects of the anesthetic alfaxalone af- ter intramuscular administration to dogs. J. Vet. Med. Sci. 2015; 77(3), 289–296.
  129. Whittem T., Pasloskhe K. S., Heit M. V., Ranasinghe M. G. The pharmacokinetics and pharmacodynamics of alfaxalone in cats after single and multiple intra- venous administration of Alfaxan at clinical and su- praclinical doses. J. Vet. Pharmacol. Ther. 2008; 31(6), 571−579.
  130. Covey D. F., Nathan D., Kalkbrenner M., Nilsson K. R., Hu Y., Zorumski C. F., Evers A. S. Enantioselectivity of pregnanolone‐induced gamma‐aminobutyric acid(A) receptor modulation and anesthesia. J. Pharmacol. Exp. Ther. 2000; 293,1009–1016.
  131. Propanidid. https://www.drugfuture.com/chemdata/ Propanidid.html (4. 3. 2023).
  132. Wang S., Liu Q., Li X., Zhao X., Qiu L., Lin J. Possible bin- ding sites and interactions of propanidid and AZD3043 within the γ-aminobutyric acid type A receptor (GABAAR).J. Biomol. Struct. Dyn. 2018; 36(15), 3926–3937.
  133. Ball Ch., Westhorpe R., Kaye G. Museum of Anaesthetic History. Anaesth. Intensive Care 2002; 30(3), 2002.
  134. Wyant G. M., Zoerb D. L. Propanidid – a new non-bar- biturate intravenous anaesthetic. Can. Anaesth. Soc. J. 1965; 12(6), 569–586.
  135. Christmas D. Immune reaction to propanidid. Anaesthe- sia 1984; 39, 470–473.
  136. Klockgether-Radke A., Kersten J., Schröder T., Staffor- st D., Kettler D., Hellige G. Anesthesia with propanidid in a liposomal preparation. An experimental study in swi- ne. Der Anaesthesist 1995; 44(8), 573–580.
  137. Deschodt J., Lubrano J. F., Peschaud J. L., Eledjam J. J., du Cailar J. Comparison of propofol and propanidid administered at a constant rate. Ann. Fr. Anesth. Reanim. 1988; 7, 459–463.
Labels
Pharmacy Clinical pharmacology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#