Hepatoprotektivní účinek kombinace glucosaminových derivativů s quercetinem proti methotrexátem indukovanému toxickému poškození jater
Authors:
Kateryna V. Vietrova; Igor A. Zupanets; Tatiana S. Sakharova
Authors‘ workplace:
National University of Pharmacy
; Pushkinska Str. 27, 61057 Kharkiv, Ukraine
; Department of Clinical Pharmacology and Clinical Pharmacy
Published in:
Čes. slov. Farm., 2020; 69, 222-229
Category:
Original article
Overview
Článek prezentuje výsledky studie kombinace aminosacharidů glukosaminu hydrochloridu (GA h/ch) a N-acetylglukosaminu s kvercetinem (Q) s názvem GlukvaminTM ke zlepšení hepatotoxicity vyvolané působením methotrexátu (MTX). Studie byla provedena na modelu MTX-indukovaného poškození jater u potkanů. GlukvaminTM byl studován v dávce 82 mg/kg při denním intragastrickém podání v průběhu 10 dní ve srovnání s látkou GA h/ch, která byla podávána intragastricky v dávce 50 mg/kg, a látkou Q také podávané intragastricky v dávce 20,5 mg/kg. Účinnost použitých léčiv byla hodnocena podle celkového stavu zvířat, hodnot hmotnostního koeficientu jater, biochemických parametrů krevního séra a histologické analýzy jaterní tkáně. Účinek GlukvaminuTM na potkany s MTX-indukovaného poškození jater způsobil zlepšení jejich celkového stavu, dle biochemických indikátorů obnovení funkčního stavu jater a výsledky histologické analýzy ukázaly pokles hepatotoxicity MTX. Zároveň účinek GlukvaminuTM statisticky významně převýšil efekt GA h/ch a Q u většiny parametrů. GlukvaminTM je tedy slibným, účinným a bezpečným léčivem pro farmakologickou korekci hepatotoxicity vyvolané působením MTX.
Klíčová slova:
glukosamin – kvercetin – GlukvaminTM – hepatoprotektivní účinek – methotrexát
Sources
1. EMA/414775/2019. New measures to avoid potentially fatal dosing errors with methotrexate for inflammatory diseases. https://www.ema.europa.eu (23.08.2019).
2. Mohammad K. Z., Tooba S., Syed S. A., Haseeb A., Fahim H. K. Understanding the binding interaction between methotrexate and human alpha-2-macroglobulin: Multi-spectroscopic and computational investigation. Archives of Biochemistry and Biophysics 2019; 675, Article 108118. https://www.sciencedirect.com.
3. LiverTox: Clinical and research information on drug induced liver injury. methotrexate. National Institute of Diabetes and Digestive and Kidney Diseases. https://www.ncbi.nlm.nih.gov/books/NBK548219/ (19.02.2020).
4. Fouad A. A., Hafez H. M., Hamouda A. Hydrogen sulfide modulates IL-6/STAT3 pathway and inhibits oxidative stress, inflammation, and apoptosis in rat model of methotrexate hepatotoxicity. Hum. Exp. Toxicol. 2020; 39(1), 77–85.
5. Hoshyar R., Sebzari A., Balforoush M., Valavi M., Hosseini M. The impact of Crocus sativus stigma against methotrexate-induced liver toxicity in rats. J. Complement. Integr. Med. 2019; 17(2), Article 20190201. https://www.degruyter.com
6. Hempfling W., Dilger K., Beuers U. Systematic review: ursodeoxycholic acid – adverse effects and drug interaction. Aliment. Pharmacol. Ther. 2003; 18(10), 963–972.
7. Zupanets K. O. The experimental foundation of the combined application of glucosamine derivatives with quercetine in different variants of osteoarthritis. Kharkiv: Ph.D. Thesis 2011, 183 p (in Ukrainian).
8. Seyed H. M., Elham B., Azar H., Khadijeh J. Protective effects of glucosamine and its acetylated derivative on serum/glucose deprivation-induced PC12 cells death: Role of reactive oxygen species. Res. Pharm. Sci. 2018; 13(2), 121–129.
9. El-Horany H. E., El-Latif R. N., ElBatsh M. M., Emam M. N. Ameliorative effect of quercetin on neurochemical and behavioral deficits in rotenone rat model of Parkinson’s disease: Modulating Autophagy (Quercetin on Experimental Parkinson’s Disease). J. Biochem. Mol. Toxicol. 2016; 30(7), 360–369.
10. Tahia H. S., Nagwa A. E., Mohammed H. H., Nahed A. M., Nashwa A. M. M., Emaad A., Azza S. T. Comparative protective effects of n-acetylcysteine, N-acetyl methionine, and N-acetyl gucosamine against pracetamol and phenacetin therapeutic doses–induced hepatotoxicity in Rats. Int. J. Hepatol. 2018; 2018, Article 7603437. https://www.hindawi.com
11. Ying-Jen C., Yuahn-Sieh H., Jiann-Torng C., Yi-Hao C., Ming-Cheng T., Ching-Long C., Chang-Min L. Protective effects of glucosamine on oxidative-stress and ischemia/reperfusion-induced retinal injury. Investig. Ophthalmol. Vis. Sci. 2015; 56, 1506–1516.
12. Fernández-Palanca P., Fondevila F., Méndez-Blanco C., Tuñón M. J., González-Gallego J., Mauriz J. L. Antitumor effects of quercetin in hepatocarcinoma in vitro and in vivo models: a systematic review. Nutrients 2019; 11, Article 2875. https://www.mdpi.com/journal/nutrients
13. Wei C. B., Zhou L. D., Zhang J. W., Zhang Q. H., Tao K. Protective effects of quercetin against the triptolide induced liver injury and relevant mechanism study. Sichuan Da Xue Xue Bao Yi Xue Ban 2019; 50(5), 684–687 (in Chinese).
14. Zohreh S. H., Azita A., Leila J., Farzad S. Effect of quercetin on oxidative stress and liver function in beta-thalassemia major patients receiving desferrioxamine: A double-blind randomized clinical trial. J. Res. Med. Sci. 2019; 24, Article 91. https://www.jmsjournal.net
15. Haleagrahara N., Hodgson K., Miranda-Hernandez S., Hughes S., Kulur A. B., Ketheesan N. Flavonoid quercetin-methotrexate combination inhibits inflammatory mediators and matrix metalloproteinase expression, providing protection to joints in collagen-induced arthritis. Inflammopharmacology 2018; 26(5), 1219–1232.
16. Eman E. B., Kamal M. M. The possible protective effect of quercetin on methotrexate induced hepatotoxicity in albino rats: biochemical , histological and immunohistochemical study. Egyptian Journal of Histology 2019; 43(1), 220–229.
17. Vietrova K. V. Experimental evidance of the expediency of correction of the toxic effects of anticancer drugs by derivatives of glucosamine and their combination with quercetin. Kharkiv: Ph.D. Thesis 2015 (in Ukrainian).
18. Guide for the care and use of laboratory animals, 8th ed. Washington: National Academies Press 2011.
19. Sharp P., Villano J. S. The laboratory rat, 2nd ed. Boca Raton: CRC Press 2013.
20. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of the European Union 2010; L276, 33–79.
21. Zupanets I. A. Experimental rationale for the use of glucosamine and its derivatives in medicine. M.D. Thesis, Kupavna, 1993 (in Russian).
22. Vardi N., Parlakpinar H., Cetin A., et al. Protective effect of β-carotene on methotrexate-induced oxidative liver damage. Toxicologic. Pathology 2010; 38, 592–597.
23. Flecknell P. A. Laboratory animal anesthesia, 4th ed. Oxford: Academic Press 2015.
24. Stefanov O. V. Preclinical studies of drugs. Kiev: Avicenna 2001 (in Ukrainian).
25. Devasagayam T. P. A., Boloor K. K., Ramasarma T. Methods for estimating lipid peroxidation: An analysis of merits and demerits. Indian Journal of Biochemistry & Biophysics 2003; 40, 300–308.
26. Rebrova O. Yu. Statistical analysis of medical data. Application of the STATISTIKA software package, 3rd ed. Moscow: Media Sphere 2006 (in Russian).
27. Alexander V. A. D., Namani S., Subramani P., Sengodan B., Radhakrishnan A. Ameliorative Effect of Quercetin on Methotrexate Induced Toxicity in Sprague-Dawley Rats: A Histopathological Study. Indian J. Pharm. Educ. 2016; 50(3), S200–S208.
28. Erdogan E., Ilgaz Y., Gurgor P. N., Oztas Y., Topal T., Oztas E. Rutin ameliorates methotrexate induced hepatic injury in rats. Acta Cir. Bras. 2015; 30(11), 778–784.
29. Bhakti A. M., Thankamani M. Protective effect of Morinda citrifolia L. (fruit extract) on methotrexate-induced toxicities – hematological and biochemical studies. Cogent Biology 2016; 2, Article 1207879. https://www.cogentoa.com
30. Kumari S. Methotrexate Induced Hepatotoxicity and its Management. Int. J. Sci. Res. 2016; 5(9), 1477–1481.
31. Cao Y., Shi H., Sun Z., Wu J., Xia Y., Wang Y., Wu Y., Li X., Chen W., Wang A., Lu Y. Protective Effects of Magnesium Glycyrrhizinate on Methotrexate-Induced Hepatotoxicity and Intestinal Toxicity May Be by Reducing COX-2. Front. Pharmacol. 2019; 10, Article 119. https://www.frontiersin.org
Labels
Pharmacy Clinical pharmacologyArticle was published in
Czech and Slovak Pharmacy
2020 Issue 5-6
Most read in this issue
- Sérové koncentrace meropenemu u pacientů vyžadujících intenzivní péči: retrospektivní analýza
- K životnímu jubileu prof. RNDr. Jozefa Csölleiho, CSc.
- Vývoj a validace metody HPLC pro kvantifikaci nečistot degradace salbutamol-sulfátu s následujícími dlouhodobými stabilitními testy ve vícesložkovém sirupu proti kašli
- Automatizovaná příprava radiofarmak jako nástroj optimalizace radiační ochrany personálu