Parietal atrophy score on magnetic resonance imaging of the brain in normally aging people
Authors:
D. Šilhán 1; I. Ibrahim 2; Jaroslav Tintěra 2; A. Bartoš 1,3
Authors‘ workplace:
Neurologická klinika 3. LF UK a FN Královské Vinohrady, Praha
1; Základna radiodiagnostiky a intervenční radiologie, Institut klinické a experimentální medicíny, Praha
2; Národní ústav duševního zdraví, Klecany
3
Published in:
Cesk Slov Neurol N 2018; 81(4): 414-419
Category:
Original Paper
doi:
https://doi.org/10.14735/amcsnn2018414
Overview
Aim:
Our intention was to create a simple visual evaluation of parietal atrophy on MRI of the brain useful in identifying neurodegenerative dementias, especially Alzheimer‘s disease. We assessed the changes of the parietal regions during natural aging.
Patients and methods:
We created a new rating scale that we named the Parietal atrophy score. This method is based on semiquantitativescoring of three structures on coronal slices in the entire parietal lobe: parietal gyri, sulcus cingularis posterior and precuneus. Each structure was rated according to the visual classification size as 0 – a normal size without atrophy, 1 – a borderline finding or 2 – a considerable atrophy. These ratings were summarized into one score for each hemisphere and then these two were integrated into one score for the entire brain. Using a visual rating scale, we classified the parietal regions in 74 elderly subjects with a normal Mini-Mental State Examination score (29 ± 1 point) with a wide range of ages between 48– 87 years.
Results:
Increasing age is associated with a mild progression of the parietal lobe atrophy (r = 0.2; p = 0.05). The overall score of the parietal tissue was not associated with education, gender or hand dominance.
Conclusion:
Our new visual rating system of parietal atrophy is an easy and fast method for use in clinical practice. Natural aging is accompanied with negligible parietal atrophic changes.
Key words:
parietal atrophy – magnetic resonance imaging – Alzheimer‘s disease – normal aging – sulcus cingularis posterior – precuneus – parietal gyri
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manu script met the ICMJE “uniform requirements” for biomedical papers
Sources
1. Harper L, Barkhof F, Scheltens P et al. An algorithmic approach to structural imaging in dementia. J Neurol Neurosurg Psychiatry 2014; 85(6): 692– 698. doi: 10.1136/ jnnp-2013-306285.
2. Vemuri P, Jack CR Jr. Role of structural MRI in Alzheimer‘s disease. Alzheimers Res Ther 2010; 31: 2(4): 23. doi: 10.1186/ alzrt47.
3. Mrzílková J, Zach P, Bartoš A et al. Volumetric analysis of the pons, cerebellum and hippocampi in patients with Alzheimer‘s disease. Dement Geriatr CognDisord 2012; 34(3– 4): 224– 234. doi: 10.1159/ 000343445.
4. Scheltens P, Leys D, Barkhof F et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992; 55(10): 967– 972.
5. Koedam EL, Lehman M, van der Flier WM et al. Visual assessment of posterior atrophy development of a MRI rating scale. Eur Radiol 2011; 21(12): 2618– 2625. doi: 10.1007/ s00330-011-2205-4.
6. Bartoš A, Zach P, Diblíková F et al. Vizuální kategorizace mediotemporální atrofie na MR mozku u Alzheimerovy nemoci. Psychiatrie 2007; 11 (Suppl 3): 49– 52.
7. Rathakrishnan BG, Doraiswamy PM, Petrella JR et al. Science to practice: translating automated brain MRI volumetry in Alzheimer’s Disease from research to routine diagnostic use in the work-up of dementia. Front Neurol 2014; 4: 216. doi: 10.3389/ fneur.2013.00216.
8. Scheltens P, Pasquier F, Weerts JG et al. Qualitative assessment of cerebral atrophy on MRI: inter- and intra-observer reproducibility in dementia and normal aging. Eur Neurol 1997; 37(2): 95– 99. doi: 10.1159/ 000117417.
9. Liu Y, Paajanen T, Zhang Y et al. Analysis of regional MRI volumes and thicknesses as predictors of conversion from mild cognitive impairment to Alzheimer‘s disease. Neurobiol Aging 2010; 31(8): 1375– 1385. doi: 10.1016/ j.neurobiolaging.2010.01.022.
10. Fennema-Notestine C, McEvoy LK, Hagler DJ Jr et al. The Alzheimer‘s Disease Neuroimaging Initiative: structural neuroimaging in the detection and prognosis of pre-clinical and early AD. Behav Neurol 2009; 21(1): 3– 12. doi: 10.3233/ BEN-2009-0230.
11. Jack CR, Shiung MM, Gunter JL et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 2004; 24: 62(4): 591– 600.
12. van de Pol LA, Hensel A, van der Flier WM et al. Hip-pocampal atrophy on MRI in frontotemporal lobar degeneration and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2006; 77(4): 439– 442. doi: 10.1136/ jnnp.2005.075341.
13. Frisoni GB, Pievani M, Testa C et al. The topography of grey matter involvement in early and late onset Alzheimer‘s disease. Brain 2007; 130(3): 720– 730. doi: 10.1093/ brain/ awl377.
14. Galton CJ, Patterson K, Xuereb JH et al. Atypical and typical presentations of Alzheimer‘s disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain 2000; 123(3): 484– 498.
15. Frisoni GB, Testa C, Sabattoli F et al. Structural correlates of early and late onset Alzheimer’s disease: voxel based morphometric study. J Neurol Neurosurg Psychiatry 2005; 76(1): 112– 114.
16. Hu WT, Wang Z, Lee VM et al. Distinct cerebral perfusion patterns in FTLD and AD. Neurology 2010; 75(10): 881– 888. doi: 10.1212/ WNL.0b013e3181f11e35.
17. Landau SM, Harvey D, Madison CM et al. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging 2011; 32(7): 1207– 1218. doi: 10.1016/ j.neurobiolaging.2009.07.002.
18. Lehmann M, Koedam EL, Barnes J et al. Posterior cerebral atrophy in the absence of medial temporal lobe atrophy in pathologically-confirmed Alzheimer’s disease. Neurobiol Aging 2012; 33(3): 627.e1– 627.e12. doi: 10.1016/ j.neurobiolaging.2011.04.003.
19. Folstein MF, Folstein SE, McHugh PR. „Mini-mental state“. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12(3): 189– 198.
20. Bartoš A, Raisová M. The Mini-Mental State Examination: Czech norms and cutoffs for mild dementia and mild cognitive impairment due to Alzheimer‘s disease. Dement Geriatr Cogn Disord 2016; 42(1– 2): 50– 57. doi: 10.1159/ 000446426.
21. Bartoš A, Raisová M. Testy a dotazníky pro vyšetřování kognitivních funkcí, nálady a soběstačnosti. Praha: Mladá fronta 2015.
22. Bartoš A, Orlíková H, Raisová M et al. Česká tréninková verze Montrealského kognitivního testu (MoCA-CZ1) k časné detekci Alzheimerovy nemoci. Cesk Slov Neurol N 2014; 77/ 110(5): 587– 594.
23. Bartoš A. Netestuj, ale POBAV – písemné záměrné Pojmenování OBrázků A jejich Vybavení jako krátká kognitivní zkouška. Cesk Slov Neurol N 2016; 79/ 112(6): 671– 679.
24. Bartoš A. Test gest (TEGEST) k rychlému vyšetření epizodické paměti u mírné kognitivní poruchy. Cesk Slov Neurol N 2018; 81/ 114(1): 37– 44. doi: 10.14735/ amcsnn201837.
25. Fjell AM, Walhovd KB, Fennema-Notestine C et al. One year brain atrophy evident in healthy aging. J Neurosci 2009; 29(48): 15223– 15231. doi: 10.1523/ JNEUROSCI.3252-09.2009.
26. Peters R. Ageing and the brain. Postgrad Med J 2006; 82(964): 84– 88. doi: 10.1136/ pgmj.2005.036665.
27. Ishii K, Kawachi T, Sasaki H et al. Voxel-based morphometric comparison between early- and late-onset mild Alzheimer‘s disease and assessment of diagnostic performance of Z score images. AJNR Am J Neuroradiol 2005; 26(2): 333– 340.
28. Shiino A, Watanabe T, Kitagawa T et al. Different atrophic patterns in early- and late-onset Alzheimer‘s disease and evaluation of clinical utility of a method of regional z-score analysis using voxel-based morphometry. Dement Geriatr Cogn Disord 2008; 26(2): 175– 186. doi: 10.1159/ 000151241.
29. Galton CJ, Patterson K, Graham K et al. Differing patterns of temporal atrophy in Alzheimer‘s disease and semantic dementia. Neurology 2001; 57(2): 216– 225.
30. Mesulam MM. Primary progressive aphasia. Ann Neurol 2001; 49(4): 425– 432.
31. Thompson SA, Patterson K, Hodges JR. Left/ right asymmetry of atrophy in semantic dementia: Behavioral-cognitive implications. Neurology 2003; 61(9): 1196– 1203.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2018 Issue 4
Most read in this issue
- Antiplatelet and anticoagulant therapy in carotid endarterectomies
- Bilateral abducens nerve palsy after head and cervical spinal injury
- Imaging of peripheral nerves using diffusion tensor imaging and MR tractography
- Late-onset Huntington’s disease – an overlooked diagnosis