#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Neurální komponenty motivačních a rozhodovacích procesů v lidském mozku


Authors: J. Zelinková 1,2;  T. Urbánek 3;  R. Mareček 1,2;  M. Brázdil 1,2
Authors‘ workplace: Výzkumná skupina pro behaviorální a sociální neurovědy, Středoevropský technologický institut (CEITEC), MU, Brno 1;  I. neurologická klinika LF MU a FN u sv. Anny v Brně 2;  Psychologický ústav Akademie věd ČR 3
Published in: Cesk Slov Neurol N 2011; 74/107(4): 419-427
Category: Review Article

Overview

Motivační a rozhodovací procesy představují důležité nástroje jak pro zvládání každodenního života, tak pro přežití člověka obecně. V poslední dekádě byla realizována řada studií, které si kladly za cíl zjistit, jak v lidském mozku tyto procesy fungují. Pro studium vztahů mezi motivací a rozhodováním na jedné a cerebrální aktivitou na druhé straně je používána především funkční magnetická rezonance (fMR). Ze současných poznatků vyplývá, že určité konkrétní oblasti mozku jsou funkčně asociovány s motivačními a rozhodovacími procesy. Předkládaný text poskytuje přehled nejvýznamnějších studií z poslední doby, které si kladly za cíl identifikovat struktury lidského mozku přímo zapojené do motivačních a rozhodovacích procesů. V minulosti byla nejčastěji zkoumána motivace ziskem, například získanou finanční odměnou, ale současná neurověda se zaměřuje také na motivaci morální, jejíž studium je popsáno v další části článku. V poslední části příspěvku jsou pak uvedena některá onemocnění související s poruchami motivačních a rozhodovacích procesů.

Klíčová slova:
motivace – rozhodovací procesy – funkční magnetická rezonance

Úvod

Schopnost rozhodovat se optimálně vzhledem k určité situaci a daným možnostem byla vždy velmi důležitá pro přežití. Rozhodovací procesy souvisí úzce s procesy motivace, které aktivují naše chování a dávají jim účel a směr. Jsou nezbytné pro adaptaci a pro udržování kvality života [1]. Existuje mnoho psycho­logických teorií motivace a teorií rozhodování [2,3], které ale nejsou tématem tohoto článku. Ten je věnován neurálním projevům, jež je možné prokázat v souvislosti s působením motivačních a rozhodovacích procesů.

Namístě je aspoň stručná psychologická vsuvka. Pojmem motiv se označuje cokoli, co aktivuje a zaměřuje chování lidí. Dále se používají např. pojmy potřeba (buď nedostatek nebo přebytek něčeho), pud (který silně aktivuje chování) a incentiva (pobídka zvnějšku). Rozlišují se potřeby a pudy, potřeby vrozené vs získané, primární vs sekundární (např. strach nebo touha po penězích), viscerogenní vs psycho­genní, vnitřní vs vnější.

Zjednodušeně řečeno se v teoriích motivace jedná o vysvětlení lidského chování z hlediska vnitřních stavů a vnějších cílů (a jejich interakcí). Jak již bylo uvedeno, teorií motivace je mnoho [2,3]. Zatímco některé z nich kladou důraz na konfiguraci schopností, přání, potřeb, cílů a emocí, jiné (např. psychoanalýza) se zajímají o pudy a jejich konflikty, z nich vyplývající úzkost a obranné mechanizmy. Lze rozlišit tři obecné skupiny teorií motivace – hédonické, které se zabývají způsoby, jakými lidé hledají potěšení, čímž redukují svoji tenzi; kognitivní teorie, které k hédonickým motivům přidávají potřebu poznání; a růstové/aktualizační teorie. Teorie rozhodování s teoriemi motivace souvisejí dosti volně, je jich také několik skupin a v zásadě se jedná o snahu vysvětlit, proč se lidé přiklánějí k různým možnostem. Jsou značně komplexní a v tomto článku se věnujeme jen několika vybraným aspektům rozhodování.

Většina psychologických teorií motivace a rozhodování nepřináší vysvětlení souvisejících neurálních procesů a stejně tak neurovědní výzkumy se nevyjadřují k většině psychologických teorií motivace a rozhodování. Mezi oběma oblastmi výzkumu tak zatím neexistuje dostatečné propojení.

Zatímco fungování řeči, vnímání a paměti bylo studováno po mnoho desetiletí, možnosti studovat procesy motivace a rozhodování byly z důvodů jejich komplexnosti velmi omezeny. Přidružení těchto složitých duševních funkcí k pre­frontální kůře bylo popsáno teprve v poslední době, a to díky nástupu nových technologií, především moderních zobrazovacích metod. Tyto technologie umožňují nahlédnout do činnosti mozku v souvislosti s chováním člověka. Metoda funkční magnetické rezonance (fMR) byla využita pro níže uvedené studie, které byly realizovány s cílem identifikovat ty struktury lidského mozku, jež by mohly být významně spojeny s procesy motivace. fMR umožňuje detekovat oblasti mozku, které se uplatňují při provádění konkrétní úlohy vyšetřovaným subjektem. Neurální aktivita je zde mapována pouze nepřímo, v návaznosti na lokální změnu oxygenace a perfuze mozkové kůry [4]. Existuje těsný vztah mezi lokální neuronální aktivitou a krevním průtokem danou oblastí. Synaptická aktivita zvyšuje krevní průtok. Při změnách množství kyslíku se mění poměr mezi oxygenovaným a deoxygenovaným hemoglobinem. Pokud se v konkrétním místě nahromadí větší množství oxyhemoglobinu, zaznamenáme zde silnější MR signál, než kdyby v této oblasti převažoval deoxyhemoglobin. Získaná data ukazují, které struktury byly během experimentu aktivovány, podílely se tak na realizaci zadaného úkolu a jsou asociovány s daným procesem, v našem případě s procesy motivace a rozhodování. Aktivní oblasti jsou vyznačeny na obr. 1.

Image 1. Neurální struktury uplatňující se v motivačních/rozhodovacích procesech nalezené v dostupných studiích.
Neurální struktury uplatňující se v motivačních/rozhodovacích procesech nalezené v dostupných studiích.

Motivace ziskem

Walter et al [5] zkoumali motivaci ziskem/odměnou (popř. ztrátou/trestem). Bylo zjištěno, že u člověka existuje systém podílející se na řízení chování v situacích, kdy lze očekávat zisk, který zahrnuje striatum, orbitofrontální kortex (OFC) a amygdalu. Nishimura et al [6] provedli recentně na skupině dobrovolníků experiment zaměřený na objasnění vztahu mezi neurálními mechanizmy a jednáním na základě instrukce, ale bez odměny. U zkoumaných subjektů byla při plnění úkolu bez odměny vyvolána aktivita v paralimbických oblastech (OFC, přední inzuly, laterálního prefrontálního kortexu, přední části cingula) a ve striatu. Zjištěné výsledky prokázaly, že tyto oblasti mozku plní významné role v motivovaném jednání. Také jsou zde vidět určité rozdíly mezi procesy motivace uplatňujícími se při motivaci ziskem oproti motivaci bez odměny.

Předmětem další práce [7] se stal výzkum neurálních odpovědí na odměnu nebo trest. Provádění úkolů zaměřených na získání odměny bylo v případě jejího dosažení spojeno s aktivací v mediálním OFC, v přední části gyrus cinguli, v amygdale a nucleus accumbens (NAcc). U trestů byla pozorována neurální odpověď v oblasti mediálního a dolního prefrontálního kortexu, horního parietálního kortexu a v inzule. Vnější motivace, při které je chování a prožívání stimulováno zvenčí, pozitivně korelovala se zvýšenými neurálními odpověďmi na odměnu v oblastech gyrus cinguli, amygdaly a putamen. Byl pozorován také negativní vztah mezi vnitřní motivací (např. potřebou, zájmem) a aktivací v těchto oblastech. Z výsledků této studie vyplývá, že neurální odpověď významně závisí na druhu motivace.

Zjištění z předchozí studie je podporováno výsledky Simona et al [8], kteří předpokládali, že variabilita v neurálním zpracování motivace pozorovaná u zdravých subjektů může odrážet individuální osobnostní rozdíly. Dobrovolníci s aktivnějším přístupem vykazovali během obdržení odměny více aktivity v oblasti ventrálního striata (VS). Také zde byla zjištěna větší aktivace v  mediální orbitofrontální oblasti, která byla pozorována během obdržení i vynechání odměny. Subjekty s vyšší behaviorální inhibicí vykazovaly při obdržení odměny nižší aktivaci VS. Tyto nálezy naznačují, že tendence dosáhnout na odměnu nebo naopak vyhýbání se situacím spojeným s odměnou ukazují na zřetelnou souvislost s neurálním zpracováním těchto podnětů. U vyšetřovaných dobrovolníků s aktivnějším přístupem se projevovala vyšší senzitivita vůči pozitivním výsledkům a také menší tendence k vyhýbání se situacím s možností dosáhnout odměny, zatímco u dobrovolníků s vyšší behaviorální inhibicí byla zjištěna oslabená reakce na odměnu.

Další studie [9] zkoumala interakce mezi prefrontálními oblastmi lidského mozku (laterální OFC, mediální OFC a dorzo­laterální prefrontální kortex, DLPFC), které doprovázejí vliv motivace na paměť. Dobrovolníci vykonali úlohu skládající se ze dvou úrovní. „Nízká motivace“ nebyla spojena s finanční odměnou, zatímco „vysoká motivace“ zahrnovala pravděpodobnost výhry jistého množství peněz. V části týkající se „nízké motivace“ ovlivnil OFC obou mozkových hemisfér pozitivně oblast levého DLPFC. Za podmínek „vysoké motivace“ se spojení v síti zahrnující oblast pravého OFC a oblast levého DLPFC měnilo od pozitivního k negativnímu, zatímco funkční konektivita v síti tvořené oblastí levého OFC a levého DLPFC byla ve srovnání s „nízkou motivací“ mírně zvýšena. Signifikantní na míře motivace závislou změnu vykázalo pouze funkční propojení mezi pravým laterálním OFC a levým DLPFC. Podle autorů se tato změna zdá být funkčním korelátem vlivu motivace na verbální pracovní paměť.

Peníze jsou často používaným prostředkem sloužícím jako odměna a zdroj motivace. S výzkumem motivačních mechanizmů souvisí i nová vědní disciplína neuroekonomie, spojující ekonomii, neuro­vědy a psychologii [10]. Jejím cílem je porozumět neurobiologickým mechanizmům, které se uplatňují při ekonomických volbách.

Knutson et al [11] ve své studii poukazují na aktivitu konkrétních struktur zapojených do rozhodovacích procesů během nakupování. Dobrovolníkům bylo nabízeno zboží různé cenové hodnoty. Při očekávání finančních zisků (výhodnosti nákupu) byla zjištěna aktivace v oblasti NAcc, zatímco v případech příliš vysoké ceny zboží došlo k aktivaci inzuly a současně ke snížení aktivity mesiálního pre­frontálního kortexu (MPFC). Tyto poznatky naznačují, že aktivita zmíněných oblastí předchází a podporuje výsledek konečného rozhodnutí.

Kuhnen et al [12] zkoumali neurální aktivitu v mozku probíhající během rozhodování se o různých finančních investicích. Zjistili, že zatímco aktivace NAcc předcházela riskantnější volby, aktivace v oblasti inzuly souvisela s  opatrnějšími volbami. Tyto výsledky se prakticky shodují s předchozí studií, která poukazuje na aktivaci NAcc v případě očekávání zisku, a tedy riskantnější volby, a aktivaci v oblasti inzuly při očekávání ztráty vedoucí k opatrnějším volbám. Aktivitou NAcc ve vztahu k očekávání odměn a trestů se zabývali i Knutson et al [13]. Jejich výsledky ukazují, že pokud zkoumaní dobrovolníci očekávali odměnu a udávali příjemný až blažený pocit, pak se zvýšila aktivita v oblasti NAcc. Pokud naopak předpokládali trest či finanční ztrátu, zkoumaná oblast zvýšenou aktivitu nevykazovala. Stejná skupina autorů [14] také v další studii poukázala na zvýšenou aktivitu MPFC, která byla zjištěna u dobrovolníků po získání finanční odměny, zatímco při jejím očekávání vykazovala zvýšení aktivity oblast VS. Pokud dobrovolníci získali očekávanou finanční odměnu, aktivita v oblasti MPFC vykazovala zvýšení, zatímco pokud očekávanou odměnu neobdrželi, aktivita zde poklesla.

Morální motivace

Další zajímavou oblastí je studium motivačních procesů, které souvisejí s chováním podle určitých morálních principů. Klinické a experimentální studie začaly poskytovat důkazy o vlivu kulturních a bio­logických faktorů na lidskou morálku. Nedávné výzkumy naznačují, že vysoce kulturně závislé osobnostní rysy projevující se při (ne)morálním jednání, závisejí na integritě prefrontální mozkové kůry [15]. U násilných zločinců a lidí postrádajících schopnost hodnocení na základě etických hledisek (schopnost říci, co je v hypotetické situaci správné, a co ne) byl popsán neobvykle vysoký výskyt poškození nebo dysfunkcí čelního laloku. Kromě jiného umožnila fMR zkoumat cerebrální procesy, ke kterým dochází v průběhu morálního rozhodování.

Tak vznikla například i studie, při níž dobrovolníci četli sérii krátkých příběhů obsahujících morální aspekty, které u nich vyvolaly různé emoce včetně odporu a rozhořčení. Negativní emoce byly spojeny s aktivací regionů frontálních a temporálních laloků. Jednalo se zejména o oblast OFC, k jejíž aktivaci došlo bilaterálně. V levé hemisféře byla aktivace rozšířena i na gyrus frontalis inferior. K aktivaci došlo také v oblastech levého frontálního opercula a bilaterálně u gyrus frontalis superior. Tato práce vyzdvihuje důležitost prefrontální a orbitofrontální mozkové kůry při tvorbě morálního úsudku [16]. V následující studii byly u dobrovolníků vyvolány specifické emoce, aby bylo možné sledovat, které oblasti mozku budou aktivovány. Za tímto účelem byly použity konkrétní scénáře pro vyvolání různých emocí, jako jsou vina, rozhořčení a soucit [17]. Různé kategorie emocí vedly k aktivaci rozdílných oblastí. Prožívání viny, rozpaků a soucitu souviselo s aktivací oblasti předního mediálního prefrontálního kortexu a sulcus temporalis superior, při zážitcích empatie došlo k dodatečnému zapojení mezolimbické dráhy. Hodnotící emoce, jako jsou odpor nebo rozhořčení, byly asociovány s aktivací amygdaly, parahipokampální a fuziformní oblasti.

Studii, ve které si museli dobrovolníci vybírat z nabídnutých scénářů, a byli tak postaveni před morální dilema, uskutečnili Schaich Borg et al [18]. Účastníkům studie byly předloženy scénáře zahrnující volbu mezi následky s různou mírou škody. Autoři rozlišovali tzv. morální scénáře, které obsahovaly volby mezi různou mírou negativních důsledků pro lidské účastníky, a tzv. ne-morální scénáře, které se týkaly negativních důsledků pro věci nebo majetek. Morální scénáře vyvolaly aktivitu v podobných oblastech mozku jako obdobné ne-morální scénáře. Ve srovnání s ne-morálními scénáři vyvolaly morální scénáře více aktivity v oblastech asociovaných s kognitivními funkcemi (jako je DLPFC) a méně aktivity v oblastech asociovaných s emocemi (OFC, temporální lalok). Srovnáno s obdobnými ne-morálními scénáři, dilema umožňující volbu minimalizující škody vyvolalo více aktivity v oblastech asociovaných s emocemi (OFC a temporální lalok) a méně aktivity v oblastech asociovaných s kognicí (zahrnující gyrus angularis a gyrus frontalis superior). A konečně ve srovnání se scénáři zahrnujícími pouze neúmyslné poškození vyvolávají scénáře způsobující úmyslné poškození více aktivity v oblastech asociovaných s emocemi (OFC a temporální lalok) a méně aktivity v oblastech asocio­vaných s kognicí (zahrnující gyrus angularis a gyrus frontalis superior). Z těchto výsledků lze vyvozovat, že různé morální úsudky jsou podporovány rozlišitelnými neurálními systémy.

Otázka, co motivuje jedince chovat se morálně, je předmětem mnoha dalších vědních disciplín, například filozofie, psychologie nebo i trestního práva. Tyto motivy jsou hluboce ovlivněny sociálním učením a individuálními biologickými rozdíly [19]. Odpovědi mohou přispět k pochopení, jak může lidská mysl produkovat antisociální chování, jako je zpronevěra, podvody, krádeže, přepadení, znásilnění a vraždy a pomoci posoudit otázky trestní zodpovědnosti za bezprostřední problémy řešené v dnešní době v soudních síních [20].

Rozhodovací procesy

Jak výběr z alternativ vedoucích k zisku/odměně nebo ztrátě/trestu, tak řešení morálních dilemat předpokládá volbu ze dvou a více možností, tzn. nějakou formu rozhodování. Proces výběru odpovědi z několika alternativ byl zkoumán ve studii Pauluse a Franka [21]. Během výběru konkrétní alternativy byla zaznamenána výrazně vyšší aktivace v gyrus frontalis medialis, k aktivaci došlo i v oblastech posteriorního parietálního kortexu, předního cingula a levé přední inzuly. V jiné studii bylo také srovnáváno emoční a kognitivní hledisko volby [22]. Při výběru z emočního hlediska byla aktivována přední inzula, operculum a přední cingulum, zatímco při rozhodnutích kognitivního hlediska byl více aktivní DLPFC. Aktivace v oblasti předního cingula korelovala se subjektivním oceněním stimulu. Oblasti mediálního OFC a ventrolaterálního prefrontálního kortexu (PFC) byly aktivnější, pokud emoční stimuly vedly k výběru. Na základě výsledků této studie se soudí, že subjektivní preference rozhodnutí je ovlivňována oblastmi inzuly a cingulátního kortexu, zatímco oblasti mediálního OFC, ventrolaterálního PFC a inzuly přispívají k vyhodnocení podnětů a motivačních aspektů výběru odpovědi.

Vzhledem k tomu, že žijeme ve složitých sociálních podmínkách, je značná část našich rozhodnutí ovlivňována sociálními interakcemi. Významnou úlohu zde hraje zejména PFC, jehož funkce souvisí se zohledňováním sociálních interakcí během rozhodování [23]. V souvislosti s lézemi PFC jsou často popisovány behaviorální poruchy a poruchy sociální percepce. Tuto skutečnost podporují i výsledky studie porovnávající skupinu pacientů s poškozením PFC se zdravými dobrovolníky [24]. Obě skupiny sledovaly nahrané sociální interakce založené na neverbálních nápovědách a odhadovaly interpersonální vztahy osob zúčastněných v nahrané scénce, jako např. stupeň intimity mezi dvěma osobami. Pacienti s lézí OFC vykazovali sníženou sociální percepci oproti zdravým dobrovolníkům. Obdobné výsledky byly stejným způsobem získány i u pacientů s poškozením DLPFC. Tato zjištění potvrzují význam PFC v procesech uplatňovaných během sociální percepce.

Poruchy motivace

Poruchy motivace mohou souviset s více mozkovými strukturami. Všechny tyto poruchy souvisí s poškozením nebo dysfunkcí prefrontální mozkové kůry a dalších struktur, zvláště těch, které jsou s prefrontální kůrou úzce spojeny (např. přední cingulum, neostriatum, dorzomediální thalamické jádro, ventrální tegmentální area (VTA), mezencefalon), nebo jejich vzájemných drah [15]. Během běžného vyšetření bývá často obtížné změny motivačních procesů postřehnout.

V klinické praxi je patrně nejlépe rozpoznatelnou změnou apatie. Apatie se vyskytuje často jako příznak dalších syndromů, ale i jako syndrom sám o sobě [25]. Je popisována jako ztráta motivace a zhoršení behaviorálních, kognitivních a emočních aspektů při nezměněném vědomí [1]. Typicky je apatie spojena se strukturním postižením mesiálních prefrontálních oblastí. Apatie je však složitějším klinickým příznakem, který může být také projevem mnoha psychiatrických onemocnění a psychosociálních patologií [26].

Pokles motivace také patří mezi první příznaky, které se objevují u většiny demencí, včetně demence Alzheimerova typu [15]. Cílem recentní studie Dujardinové et al [27] bylo prověřit u pacientů s demencí u Parkinsonovy nemoci, zda se pokles kognitivních funkcí objevil častěji u apatických jedinců než u subjektů, které apatii nevykazovaly. Při vstupu do studie měli pacienti vykazující apatii oproti ne­apatickým subjektům výrazně nižší globální kognitivní status. Po 18 měsících bylo zjištěno, že apatická skupina vykazovala výrazně vyšší rychlost změn příznačných pro demenci než skupina apatii nejevící. Dokonce i v případě pacientů, kteří demenci nevykazovali, docházelo k poklesu kognitivní výkonnosti mnohem častěji u apatických pacientů než u těch, v jejichž případech nebyla apatie pozorována. Tyto poznatky naznačují, že u pacientů trpících Parkinsonovou nemocí nevykazujících demenci nebo depresi může být apatie prediktivním faktorem pro pokles kognitivních funkcí a rozvoj demence.

Běžné motivační mechanizmy nefungují zpravidla ani u autistických osob. Odlišnosti ve struktuře a funkci CNS autistických jedinců jsou patrné jak na mikro­skopické, tak makroskopické úrovni. Přestože popsané nálezy nejsou konzistentní, v centru pozornosti stojí frontální, temporální a parietální kortex, bazální ganglia (zejména nucleus caudatus), amygdala, hipokampus, thalamus a mozeček. Makroskopické abnormality v těchto oblastech jsou jak ve smyslu zvýšení, tak i snížení objemu popsaných struktur [28]. Kleinhans et al [29] vyšetřili dobrovolníky s autizmem MR spek­troskopií a zjistili významné snížení NAA (N-acetyl­aspartát) ve všech oblastech mozku. V souladu s tím výzkumy uskutečněné s pomocí protonové magnetické rezonanční spektroskopie (1H MRS) potvrdily, že pacienti postižení cévní mozkovou příhodou (CMP) a trpící následně apatií měli nižší podíl NAA/Cr (N-acetylaspartát//kreatin) v pravém frontálním laloku oproti neapatickým subjektům [30]. Dále autoři srovnávali dvě skupiny pacientů podle toho, byla-li postižena ischemií levá, nebo pravá hemisféra. U skupiny apatických pacientů s levostranným poškozením byl nalezen signifikantně nižší poměr NAA/Cr v oblasti pravé mozkové hemisféry. Tyto výsledky směřují k závěru, že v některých případech může apatie vyskytující se po CMP souviset s metabolickými změnami v oblastech mozku vztahujícími se k motivačním procesům, a to i když tyto oblasti nebyly přímo zasaženy ischemií.

Oslabení motivace bývá pozorováno i u pacientů s traumatickým poraněním mozku [1]. Poškození struktur popsaných v předchozí části článku, tzn. pre­frontální, oblasti předního cingula, NAcc, VS, thalamu a VTA, může způsobovat poruchy motivace. Typickými příznaky jsou pak apatie, abulie a totální absence spontánního chování. Lidské chování se stává bezúčelným, chaotickým a chudým, a to i když postiženému zůstane zachována většina kognitivních schopností. K něčemu podobnému zřejmě došlo i u literárně slavného pacienta P. P. Gage v polovině 19. století. Jde o dobře zdokumentovaný případ těžkého otevřeného poranění mozku masivní ocelovou tyčí s poškozením obou mesiálních prefrontálních oblastí. Gage se dokázal překvapivě rychle z extrémního zranění zotavit. Jeho hybnost i většina kognitivních funkcí zůstaly neporušeny. Došlo u něj ale k výrazným osobnostním změnám. Odpovědný, inteligentní, společensky dobře přizpůsobivý, výkonný a svědomitý muž se po incidentu zásadním způsobem změnil. Stal se nerozhodným a neschopným držet se svých plánů [31]. Přestal dodržovat svoje závazky a v důsledku toho opakovaně přišel i o práci. Zasažené oblasti tedy podle všeho hrály důležitou roli v jeho procesech motivace a rozhodování.

Další studie zkoumala podobnosti a rozdíly u apatií vyvolaných různými patologickými procesy. Byly srovnávány následné stavy po traumatickém poranění mozku s obrazem apatie u pacientů trpících schizofrenií [32]. U obou skupin byla zjištěna stejná míra apatie, ale pacienti trpící schizofrenií vykazovali vážnější příznaky anhedonie, alogie a menší schopnosti prožitků. Juckel et al [33] použili fMR, aby sledovali odpověď ve VS u nemedikovaných schizofreniků při prezentaci podnětů naznačujících budoucí zisk a ztrátu. Výsledky odhalily sníženou aktivaci v levém VS při prezentaci odměny v porovnání se zdravými jedinci. Tato reakce ve VS při porovnání odměna vs neutrální vizuální podnět nepřímo korelovala se závažností negativních příznaků. V těchto případech může vysoká hladina dopaminu v oblasti VS narušit neurální zpracování podnětů týkajících se predikce odměny. A to pak může přispět k negativním symptomům, jako jsou anhedonie, apatie a ztráta motivace. Další klinické studie naznačují, že u medikovaných schizofreniků jsou některá netypicky používaná neuroleptika (např. olanzapin, risperidon) efektivnější než typická neuroleptika (např. haloperidol) v redukci negativních symptomů, které zahrnují apatii a anhedonii [34]. Schizofrenici léčení atypickými neuroleptiky vykazovali v odpovědi na podněty indikující odměnu aktivaci pravého VS, zatímco skupina schizofreniků léčená typickými neuroleptiky signifikantně zvýšenou odpověď nevykazovala. U zdravých dobrovolníků byla zjištěna aktivace VS bilaterálně. U pacientů léčených typickými neuroleptiky korelovalo snížení aktivace v levém VS se závažností negativních symptomů.

V posledních letech jsou poměrně často popisovány izolované poruchy motivace a jednání u neurologických pacientů, které mohou být podle všeho způsobeny bilaterální lézí v bazálních gangliích [35]. Tyto léze mohou být ischemické nebo toxické. Usuzuje se, že dochází k bilaterální dysfunkci kortiko-subkortikálních okruhů, která se klinicky projevuje dramatickým snížením spontánního jednání postižených jedinců. Dochází k poklesu nebo absenci spontánních myšlenek. V důsledku toho může ztráta zájmu u těchto pacientů ovlivnit jejich spolupráci při diagnostice. Habib [36] publikoval pozorování dvou jinak zdravých jedinců, u nichž se rozvinuly výrazné poruchy motivace. U popsaných případů docházelo mimo jiné k výraznému poklesu vůle, aktivity, schopnosti spontánně myslet a k hluboké netečnosti. S pomocí SPECT byla v prvním případě zjištěna bilaterální hypoperfuze v oblasti bazálních ganglií bez významných změn kortikálního krevního průtoku a v dalším případě pak bylo prokázáno bilaterální poškození hlavy nucleus caudatus. Oba pacienti měli společné nejen dramatické změny chování, ale také velmi podobně lokalizované léze. Lakunární infarkty byly u obou pacientů nejvíce vyjádřeny v oblasti nucleus caudatus. Popsaný syndrom je v současnosti popisován jako athymhormia.

Testována byla také hypotéza, že apatie vyvolaná hlubokou mozkovou stimulací subtalamického jádra u Parkinsonovy nemoci koreluje se změnami v metabolizmu glukózy [37]. Dvanáct pacientů s Parkinsonovou nemocí bylo s pomocí 18FDG-PET hodnoceno tři měsíce před stimulací a tři měsíce po ní. Po třech měsících od stimulace došlo k výraznému prohloubení apatie. Mezi apatií a změnou metabolizmu glukózy byla pozorována pozitivní korelace, a to zejména v pravém gyru frontalis medialis (BA 10) a v pravém gyru frontalis inferior (BA 46, BA 47). Negativní korelace byla pozorována v pravém zadním cingulu (BA 31) a levém mediálním čelním laloku (BA 9). Tyto předběžné výsledky naznačují, že subthalamické jádro je jednou z klíčových struktur ovlivňujících motivační mechanizmy.

Anhedonie a pokles motivace patří mezi symptomy deprese. Neurobiologické výzkumy naznačují, že u tohoto v současnosti poměrně častého onemocnění může hrát roli narušení frontálních dopaminergních projekcí. Deprese často limituje efektivní léčbu motorických příznaků, snižuje funkční schopnosti nemocných a zhoršuje kvalitu jejich života [38]. Popisovány jsou také souvislosti mezi depresí a nadměrným užíváním alkoholu nebo drog.

Obecně se má za to, že alkohol ovlivňuje emoce, jako jsou úzkost a strach, pomocí modulace zpracování informací. To potvrzuje také studie zkoumající akutní účinky alkoholu na afektivní zpracování obrazových stimulů pomocí metody evokovaných potenciálů (ERP) [39]. Dvě skupiny dobrovolníků (první skupina účastníků obdržela nápoj obsahující mírné dávky alkoholu, zatímco druhé skupině byl podán nealkoholický nápoj) dostaly za úkol pozorovat obrazové podněty s příjemnou, nepříjemnou či neutrální náplní. Výsledky ukazují, že alkohol snižuje mozkovou činnost při sledování nepříjemné informace a potvrzují vliv alkoholu na zpracování afektivních informací. Existuje několik rozličných metabolických cest vzniku závislosti na alkoholu. Každá z nich je zprostředkována zvláštními nervovými spoji a drahami. Bylo prokázáno, že alkohol působí na tvorbu endorfinů a výrazně zvyšuje hladinu dopaminu v některých oblastech mozku (NAcc) a v mozkových drahách, způsobem podobným působení některých drog.

Již poměrně dlouhou dobu se v psychiatrii diskutuje o tzv. amotivačním syndromu, snad souvisejícím s negativním vlivem užívání marihuany na motivaci. Tento syndrom se projevuje apatií, ztrátou energie, snížením pozornosti a zhoršením pracovních výkonů. Nestor et al [40] recentně uskutečnili výzkum prověřující chronické účinky marihuany na ty oblasti mozku, které zpracovávají odměnu a mají vliv na motivaci člověka. U uživatelů konopí byla s pomocí fMR zjištěna signifikantně zvýšená odpověď v oblasti pravého VS během očekávání zisku, která signifikantně korelovala s délkou a celkovým množstvím užité drogy. V levém inzulárním kortexu naopak došlo ke snížení aktivity jako reakce na ztrátu a zkoumané subjekty v souladu s tímto nálezem vykazovaly sníženou snahu vyhnout se ztrátě. Také Martin-Soelch et al [41] ve své studii potvrzují, že pravidelné užívání konopí se dotýká některých aspektů motivace a že jak nikotinizmus, tak užívání konopí vede k podobným změnám v motivačních procesech. Zde autoři srovnávali motivaci u uživatelů marihuany, pravidelných kuřáků tabáku a nekuřáků během plnění úkolu, při němž byli dobrovolníci motivováni finančním ziskem. U skupiny nekuřáků byla zjištěna významná pozitivní korelace mezi náladou subjektů a ziskem peněžní odměny, ale zbylé dvě skupiny tuto závislost nevykazovaly. Užívání konopí však ovlivnilo motivaci mnohem výrazněji než kouření tabáku. Předpokládá se, že jsou za to odpovědné změny v hladině dopaminu a poruchy v neurálních okruzích podílejících se na motivaci a pozornosti.

Velmi zajímavý je výzkum tzv. extrémní lenosti, která může podle australských vědců souviset se zdravotními důvody. Motivační deficit, charakterizovaný ohromující a vysilující apatií, byl podle citované studie objeven u každého pátého vyšetřovaného jedince ze skupiny testovaných Australanů [42]. V extrémních případech může být tato porucha pro postiženého dokonce fatální. Onemocnění lze diagnostikovat pomocí testů hodnotících stupeň motivace v kombinaci s pozitronovou emisní tomografií. V současnosti je tato patologie nedostatečně prozkoumána a diagnostikována.

Možnosti terapie

Léčba poruch motivačních procesů závisí na příčině, se kterou tyto defekty souvisí. Přesná diagnóza se stává zvláště důležitou s příchodem stále více cílených terapií, které mohu být farmakologické, kognitivně-rehabilitační a další. Na zmírnění apatie jsou podávány léky zvyšující hladinu dopaminu (amantadin, amfetamin, bromocriptin, bupropion, metylfenidát a selegilin) [25,38]. Také je možné použít preparáty stimulující CNS (pemolin) [38]. Obecně lze doporučit využití poradenství s podporou systému vnitřní motivace a spojovat podněty s odměnou. U většiny vážnějších případů však bohužel dosavadní možnosti léčby nezaznamenaly trvalejší úspěch.

Struktury uplatňující se v motivačních procesech

Snahou současného široce koncipovaného neurovědního výzkumu je mimo jiné lépe porozumět souvislostem mezi cerebrálními komponentami a konkrétními mentálními procesy. Tento souhrnný článek zaměřený na studium lidského mozku v souvislosti s motivačními a rozhodovacími procesy uvádí řadu recentních prací, jejichž výsledky identifikují konkrétní cerebrální struktury ve vztahu k motivačním mechanizmům (NAcc, inzula, OFC, DLPFC, VS, přední cingulum, amygdala). Pokusili jsme se přehledně je uspořádat v tab. 1. Obsahuje jednotlivé struktury mozku členěné pokud možno hierarchicky spolu se stručným odkazem na výzkumné výsledky a citované studie. Byla také zjištěna souvislost mezi hladinou dopaminu, integritou dopaminergního systému a strukturami mozku zpracovávajícími odměny a ovlivňujícími motivační procesy [25,33,40,43,44]. Významnou roli může v některých případech zřejmě hrát i snížená hladina NAA [29,30], která však na druhé straně může být pouhým epifenoménem, odrážejícím pouze v obecné rovině dysfunkci dané oblasti.

Table 1. Souvislosti neurálních struktur a motivačních/rozhodovacích procesů nalezené v dostupných studiích.
Souvislosti neurálních struktur a motivačních/rozhodovacích procesů nalezené v dostupných studiích.

jp_35788_f_1
jp_35788_f_1

jp_35788_f_2
jp_35788_f_2

Léze uvedených cerebrálních struktur pak mohou souviset s poruchami motivace u postižených jedinců. Deficit motivace může být obecně způsoben širokou škálou neurologických, psychiatrických a geriatrických poruch. Přesná diagnóza se stává zvláště důležitou s příchodem stále více cílených terapií. Poruchy motivace mají velmi negativní dopad na kvalitu života pacienta, jeho produktivitu, možnost vést normální život a na jeho úlohu ve společnosti.

Práce byla uskutečněna za podpory výzkumných záměrů MŠMT ČR č. MSM0021622404 (MB) a AV0Z70250504 (TU).

Mgr. Jana Zelinková
I. neurologická klinika
LF MU a FN u sv. Anny
Pekařská 53
656 91 Brno
e-mail: 85355@mail.muni.cz

Přijato k recenzi: 16. 8. 2010
Přijato do tisku: 7. 12. 2010


Sources

1. Marin RS, Wilkosz PA. Disorders of diminished motivation. J Head Trauma Rehab 2005; 20(4): 377–388.

2. Madsen KB. Moderní teorie motivace. Praha: Academia 1979.

3. Madsen KB. Teorie motivace. Praha: Academia 1972.

4. Chlebus P, Mikl M, Brázdil M, Krupa P. Funkční magnetická rezonance – úvod do problematiky. Neurol pro praxi 2005; 6(3): 133–139.

5. Walter H, Abler B, Ciaramidaro A, Erk S. Motivating forces of human actions: Neuroimaging reward and social interaction. Brain Res Bull 2005; 67(5): 368–381.

6. Nishimura M, Yoshii Y, Watanabe J, Ishiuchi S. Paralimbic system and striatum are involved in motivational behavior. Neuroreport 2009; 20(16): 1407–1413.

7. Linke J, Kirsch P, King AV, Gass A, Hennerici MG, Bongers A et al. Motivational orientation modulates the neural response to reward. Neuroimage 2010; 49(3): 2618–2625.

8. Simon JJ, Walther S, Fiebach CJ, Friederich HC, Stippich C, Weisbrod M et al. Neural reward processing is modulated by approach- and avoidance-related personality traits. Neuroimage 2010; 49(2): 1868–1874.

9. Szatkowska I, Bogorodzki P, Wolak T, Marchewka A, Szeszkowski W. The effect of motivation on working memory: An fMRI and SEM study. Neurobiol Learn Mem 2008; 90(2): 475–478.

10. Glimcher PW, Rustichini A. Neuroeconomics: the consilience of brain and decision. Science 2004; 306(5695): 447–452.

11. Knutson B, Rick S, Wimmer GE, Prelec D, Loewenstein G. Neural predictors of purchases. Neuron 2007; 53(1): 147–156.

12. Kuhnen CM, Knutson B. The neural basis of financial risk taking. Neuron 2005; 47(5): 763–770.

13. Knutson B, Adams CM, Fong GW, Hommer D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 2001; 21(16): RC159.

14. Knutson B, Fong GW, Bennett SM, Adams CM, Hommer D. A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. Neuroimage 2003; 18(2): 263–272.

15. Goldberg E. Attention and Motivation. In: Bloom FE, Beal MF, Kupfer DJ (eds). The Dana Guide to Brain Health. New York: Dana Press 2003: 196–199.

16. Moll J, de Oliveira-Souza R, Moll FT, Ignácio FA, Bramati IE, Caparelli-Dáquer EM et al. The moral affiliations of disgust. A functional MRI study. Cogn Behav Neurol 2005; 18(1): 68–78.

17. Moll J, de Oliveira-Souza R, Garrido GJ, Bramati IE, Caparelli-Daquer EM, Paiva ML et al. The self as a moral agent: Linking the neural bases of social agency and moral sensitivity. Soc Neurosci 2007; 2(3–4): 336–352.

18. Schaich Borg J, Hynes C, Horn JV, Grafton S, Sinnott-Armstrong W. Consequences, action and intention as factors in moral judgments: an fMRI investigation. J Cog Neurosci 2006; 18(5): 803–817.

19. Moll J, de Oliveira-Souza R, Zahn R. The neural basis of moral cognition: sentiments, concepts, and values. Ann NY Acad Sci 2008; 1124(1): 161–180.

20. Gazzaniga MS. The law and neuroscience. Neuron 2008; 60(3): 412–415.

21. Paulus MP, Frank LR. Ventromedial prefrontal cortex activation is critical for preference judgments. Neuroreport 2003; 14(10): 1311–1315.

22. Chaudhry AM, Parkinson JA, Hinton EC, Owen AM, Roberts AC. Preference judgements involve a network of structures within frontal, cingulate and insula cortices. Eur J Neurosci 2009; 29(5): 1047–1055.

23. Rilling JK, Sanfey AG. The neuroscience of social decision-making. Annu Rev Psychol 2011; 62: 23–48.

24. Mah L, Arnold MC, Grafman J. Impairment of social perception associated with lesions of the prefrontal cortex. Am J Psychiatry 2004; 161(7): 1247–1255.

25. Marin RS, Fogel BS, Hawkins J, Duffy J, Krupp B. Apathy: a treatable syndrome. J Neuropsychiatry Clin Neurosci 1995; 7(1): 23–30.

26. Marin RS, Chakravorty S. 18. Disorders of Diminished Motivation. In: Silver JM, McAllister TW, Yudofsky SC (eds). Textbook of Traumatic Brain Injury. Washington, DC: American Psychiatric Publishing 2005: 337–352.

27. Dujardin K, Sockeel P, Delliaux M, Destée A, Defebvre L. Apathy may herald cognitive decline and dementia in Parkinson’s disease. Mov Disorders 2009; 24(16): 2391–2397.

28. Fialová L. Dětský autizmus v pohledu genetiky a vývojové neurobiologie. Psychiatrie 2007; 11(4): 220–225.

29. Kleinhans NM, Schweinsburg BC, Cohen DN, Müller RA, Courchesne E. N-acetyl aspartate in autism spectrum disorders: regional effects and relationship to fMRI activation. Brain Res 2007; 1162: 85–97.

30. Glodzik-Sobanska L, Slowik A, Kieltyka A, Kozub J, Sobiecka B, Urbanik A et al. Reduced prefrontal N--acetylaspartate in stroke patients with apathy. J Neurol Sci 2005; 238(1–2): 19–24.

31. Damasio H, Grabowski T, Frank R, Galaburda AM, Damasio AR. The return of Phineas gage: clues about the brain from the skull of a famous patient. Science 1994; 264(5162): 1102–1105.

32. Rao V, Spiro JR, Schretlen DJ, Cascella NG. Apathy Syndrome After Traumatic Brain Injury Compared With Deficits In Schizophrenia. Psychosomatics 2007; 48(3): 217–222.

33. Juckel G, Schlagenhauf F, Koslowski M, Wüstenberg T, Villringer A, Knutson B et al. Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage 2006; 29(2): 409–416.

34. Juckel G, Schlagenhauf F, Koslowski M, Filonov D, Wüstenberg T, Villringer A et al. Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics. Psychopharmacology 2006; 187(2): 222–228.

35. Habib M. Activity and motivational disorders in neurology: proposal for an evaluation scale. Encephale 1995; 21(5): 563–570.

36. Habib M. Athymhormia and disorders of motivation in basal ganglia disease. J Neuropsychiatry Clin Neurosci 2004; 16(4): 509–524.

37. Le Jeune F, Drapier D, Bourguignon A, Péron J, Mesbah H, Drapier S et al. Subthalamic nucleus stimulation in Parkinson disease induces apathy: a PET study. Neurology 2009; 73(21): 1746–1751.

38. Anders M, Roth J, Uhrová T. Organická deprese při vybraných onemocněních mozku. Psychiatrie 2005; 9(1): 32–39.

39. Franken IH, Nijs IM, Muris P, Van Strien JW. Alcohol selectively reduces brain activity during the affective processing of negative information. Alcohol Clin Exp Res 2007; 31(6): 919–927.

40. Nestor L, Hester R, Garavan H. Increased ventral striatal BOLD activity during non-drug reward anticipation in cannabis users. Neuroimage 2010; 49(1): 1133–1143.

41. Martin-Soelch Ch, Kobel M, Stoecklin M, Michael T, Weber S, Krebs B et al. Reduced Response to Reward in Smokers and Cannabis Users. Neuropsychobiology 2009; 60(2): 94–103.

42. Moynihan R. Scientists find new disease: motiva­tional deficiency disorder. BMJ 2006; 332: 745.

43. Menon V, Levitin DJ. The rewards of music listening: response and physiological connectivity of the mesolimbic system. Neuroimage 2005; 28(1): 175–184.

44. Volkow ND, Wang GJ, Kollins SH, Wigal TL, Newcorn JH, Telang F et al. Evaluating dopamine reward pathway in ADHD: clinical implications. JAMA 2009; 302(10): 1084–1091.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery


2011 Issue 4

Most read in this issue
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#