#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Neural Components of Motivational and Decision-Making Processes in the Human Brain


Authors: J. Zelinková 1,2;  T. Urbánek 3;  R. Mareček 1,2;  M. Brázdil 1,2
Authors‘ workplace: Výzkumná skupina pro behaviorální a sociální neurovědy, Středoevropský technologický institut (CEITEC), MU, Brno 1;  I. neurologická klinika LF MU a FN u sv. Anny v Brně 2;  Psychologický ústav Akademie věd ČR 3
Published in: Cesk Slov Neurol N 2011; 74/107(4): 419-427
Category: Review Article

Overview

Motivational and decision-making processes are important tools in both making daily decisions and overall survival of the physical subject. In the last decade many studies have investigated how these processes function in the human brain. Functional magnetic resonance imaging (fMRI) has played a large part in research into the relationships between motivation and decision-making on the one hand and cerebral activity on the other. Current results suggest that certain areas of the brain are functionally associated with motivational and decision-making processes. This article provides an overview of the most significant recent studies into seeking to identify the structures of the human brain involved in motivational and decision-making processes. In the past, much attention was paid to “gain motivation” (for example, towards financial reward), but current science also focuses on moral motivation, the study of which is addressed in the following part of the article. Some diseases associated with motivational and decision-making disorders are shown in the last part of the article.

Key words:
motivation – decision-making processes – functional magnetic resonance imaging


Sources

1. Marin RS, Wilkosz PA. Disorders of diminished motivation. J Head Trauma Rehab 2005; 20(4): 377–388.

2. Madsen KB. Moderní teorie motivace. Praha: Academia 1979.

3. Madsen KB. Teorie motivace. Praha: Academia 1972.

4. Chlebus P, Mikl M, Brázdil M, Krupa P. Funkční magnetická rezonance – úvod do problematiky. Neurol pro praxi 2005; 6(3): 133–139.

5. Walter H, Abler B, Ciaramidaro A, Erk S. Motivating forces of human actions: Neuroimaging reward and social interaction. Brain Res Bull 2005; 67(5): 368–381.

6. Nishimura M, Yoshii Y, Watanabe J, Ishiuchi S. Paralimbic system and striatum are involved in motivational behavior. Neuroreport 2009; 20(16): 1407–1413.

7. Linke J, Kirsch P, King AV, Gass A, Hennerici MG, Bongers A et al. Motivational orientation modulates the neural response to reward. Neuroimage 2010; 49(3): 2618–2625.

8. Simon JJ, Walther S, Fiebach CJ, Friederich HC, Stippich C, Weisbrod M et al. Neural reward processing is modulated by approach- and avoidance-related personality traits. Neuroimage 2010; 49(2): 1868–1874.

9. Szatkowska I, Bogorodzki P, Wolak T, Marchewka A, Szeszkowski W. The effect of motivation on working memory: An fMRI and SEM study. Neurobiol Learn Mem 2008; 90(2): 475–478.

10. Glimcher PW, Rustichini A. Neuroeconomics: the consilience of brain and decision. Science 2004; 306(5695): 447–452.

11. Knutson B, Rick S, Wimmer GE, Prelec D, Loewenstein G. Neural predictors of purchases. Neuron 2007; 53(1): 147–156.

12. Kuhnen CM, Knutson B. The neural basis of financial risk taking. Neuron 2005; 47(5): 763–770.

13. Knutson B, Adams CM, Fong GW, Hommer D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 2001; 21(16): RC159.

14. Knutson B, Fong GW, Bennett SM, Adams CM, Hommer D. A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. Neuroimage 2003; 18(2): 263–272.

15. Goldberg E. Attention and Motivation. In: Bloom FE, Beal MF, Kupfer DJ (eds). The Dana Guide to Brain Health. New York: Dana Press 2003: 196–199.

16. Moll J, de Oliveira-Souza R, Moll FT, Ignácio FA, Bramati IE, Caparelli-Dáquer EM et al. The moral affiliations of disgust. A functional MRI study. Cogn Behav Neurol 2005; 18(1): 68–78.

17. Moll J, de Oliveira-Souza R, Garrido GJ, Bramati IE, Caparelli-Daquer EM, Paiva ML et al. The self as a moral agent: Linking the neural bases of social agency and moral sensitivity. Soc Neurosci 2007; 2(3–4): 336–352.

18. Schaich Borg J, Hynes C, Horn JV, Grafton S, Sinnott-Armstrong W. Consequences, action and intention as factors in moral judgments: an fMRI investigation. J Cog Neurosci 2006; 18(5): 803–817.

19. Moll J, de Oliveira-Souza R, Zahn R. The neural basis of moral cognition: sentiments, concepts, and values. Ann NY Acad Sci 2008; 1124(1): 161–180.

20. Gazzaniga MS. The law and neuroscience. Neuron 2008; 60(3): 412–415.

21. Paulus MP, Frank LR. Ventromedial prefrontal cortex activation is critical for preference judgments. Neuroreport 2003; 14(10): 1311–1315.

22. Chaudhry AM, Parkinson JA, Hinton EC, Owen AM, Roberts AC. Preference judgements involve a network of structures within frontal, cingulate and insula cortices. Eur J Neurosci 2009; 29(5): 1047–1055.

23. Rilling JK, Sanfey AG. The neuroscience of social decision-making. Annu Rev Psychol 2011; 62: 23–48.

24. Mah L, Arnold MC, Grafman J. Impairment of social perception associated with lesions of the prefrontal cortex. Am J Psychiatry 2004; 161(7): 1247–1255.

25. Marin RS, Fogel BS, Hawkins J, Duffy J, Krupp B. Apathy: a treatable syndrome. J Neuropsychiatry Clin Neurosci 1995; 7(1): 23–30.

26. Marin RS, Chakravorty S. 18. Disorders of Diminished Motivation. In: Silver JM, McAllister TW, Yudofsky SC (eds). Textbook of Traumatic Brain Injury. Washington, DC: American Psychiatric Publishing 2005: 337–352.

27. Dujardin K, Sockeel P, Delliaux M, Destée A, Defebvre L. Apathy may herald cognitive decline and dementia in Parkinson’s disease. Mov Disorders 2009; 24(16): 2391–2397.

28. Fialová L. Dětský autizmus v pohledu genetiky a vývojové neurobiologie. Psychiatrie 2007; 11(4): 220–225.

29. Kleinhans NM, Schweinsburg BC, Cohen DN, Müller RA, Courchesne E. N-acetyl aspartate in autism spectrum disorders: regional effects and relationship to fMRI activation. Brain Res 2007; 1162: 85–97.

30. Glodzik-Sobanska L, Slowik A, Kieltyka A, Kozub J, Sobiecka B, Urbanik A et al. Reduced prefrontal N--acetylaspartate in stroke patients with apathy. J Neurol Sci 2005; 238(1–2): 19–24.

31. Damasio H, Grabowski T, Frank R, Galaburda AM, Damasio AR. The return of Phineas gage: clues about the brain from the skull of a famous patient. Science 1994; 264(5162): 1102–1105.

32. Rao V, Spiro JR, Schretlen DJ, Cascella NG. Apathy Syndrome After Traumatic Brain Injury Compared With Deficits In Schizophrenia. Psychosomatics 2007; 48(3): 217–222.

33. Juckel G, Schlagenhauf F, Koslowski M, Wüstenberg T, Villringer A, Knutson B et al. Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage 2006; 29(2): 409–416.

34. Juckel G, Schlagenhauf F, Koslowski M, Filonov D, Wüstenberg T, Villringer A et al. Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics. Psychopharmacology 2006; 187(2): 222–228.

35. Habib M. Activity and motivational disorders in neurology: proposal for an evaluation scale. Encephale 1995; 21(5): 563–570.

36. Habib M. Athymhormia and disorders of motivation in basal ganglia disease. J Neuropsychiatry Clin Neurosci 2004; 16(4): 509–524.

37. Le Jeune F, Drapier D, Bourguignon A, Péron J, Mesbah H, Drapier S et al. Subthalamic nucleus stimulation in Parkinson disease induces apathy: a PET study. Neurology 2009; 73(21): 1746–1751.

38. Anders M, Roth J, Uhrová T. Organická deprese při vybraných onemocněních mozku. Psychiatrie 2005; 9(1): 32–39.

39. Franken IH, Nijs IM, Muris P, Van Strien JW. Alcohol selectively reduces brain activity during the affective processing of negative information. Alcohol Clin Exp Res 2007; 31(6): 919–927.

40. Nestor L, Hester R, Garavan H. Increased ventral striatal BOLD activity during non-drug reward anticipation in cannabis users. Neuroimage 2010; 49(1): 1133–1143.

41. Martin-Soelch Ch, Kobel M, Stoecklin M, Michael T, Weber S, Krebs B et al. Reduced Response to Reward in Smokers and Cannabis Users. Neuropsychobiology 2009; 60(2): 94–103.

42. Moynihan R. Scientists find new disease: motiva­tional deficiency disorder. BMJ 2006; 332: 745.

43. Menon V, Levitin DJ. The rewards of music listening: response and physiological connectivity of the mesolimbic system. Neuroimage 2005; 28(1): 175–184.

44. Volkow ND, Wang GJ, Kollins SH, Wigal TL, Newcorn JH, Telang F et al. Evaluating dopamine reward pathway in ADHD: clinical implications. JAMA 2009; 302(10): 1084–1091.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery


2011 Issue 4

Most read in this issue
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#