Prerequisites for Preimplantation Genetic Diagnosis (PGD) in Carriers of Mutations Responsible for Hereditary Cancers
Authors:
R. Hűttelová 1; Z. Kleibl 2; J. Řezáčová 3; V. Krutílková 4; L. Foretová 5; J. Novotný 6; J. Kotlas 7; Michal Zikán 8; P. Pohlreich 2
Authors‘ workplace:
IVF – Institut s. r. o, Plzeň 2Ústav biochemie a experimentální onkologie 1. LF UK, Praha 3Ústav pro péči o matku a dítě, Praha 4GENNET s. r. o., Praha 5Oddělení epidemiologie a genetiky nádorů MOÚ Brno 6Institut onkologie a rehabilitace Na Pleši s. r. o.
1
Published in:
Klin Onkol 2009; 22(Supplementum): 69-74
Overview
Backgrounds:
Carriers of hereditary mutations in cancer susceptibility genes represent a limited but high risk population characterized by a high probability of cancer development, frequently with its manifestation in early age and with a 50% chance of pathogenic allele inheritance by offspring. In case of monogenic disorders, preimplantation genetic diagnosis (PGD) could be used for characterization of the DNA region affected by pathogenic mutation in the early stages of an embryo created by in vitro fertilization (IVF). Therefore, the transfer of unaffected embryos could be performed based on the results of PGD genotyping, enabling the development of offspring not carrying the pathogenic alteration.
Aim:
Here we present the consensus of the collaborative group of the Society for Medical Genetics, the Czech Society for Oncology and other professionals for use of PGD in the Czech Republic for carriers of mutations in cancer susceptibility genes. We address the conditions, prerequisites, and limits of practical application of this method. We also point out specific issues of ovarian hyperstimulation in carriers of mutations in BRCA1, BRCA2, and p53, anticipating the increased risk of hormonally dependent breast and ovarian cancers development.
Conclusions:
We assume that a narrow but non negligible subgroup of cancer susceptibility gene mutation carriers may benefit from PGD. They are mainly individuals deciding to undergo IVF and PGD recruited from mutation carriers with extreme concerns about transmitting the mutation to their children. The PGD in these individuals should be managed by a closely cooperating multidisciplinary team of professionals responsible for indication of PGD, giving complete information regarding the IVF and PGD procedures including their limits, evaluating individual risks and performing instrumental and laboratory procedures with respect to up-to-date good laboratory and clinical practice.
Key words:
preimplantation genetic diagnosis – hereditary cancer syndromes – in vitro fertilization – ovarian hyperstimulation
Sources
1. Lee SJ, Schover LR, Partridge AH et al. American Society of Clinical Oncology Recommendations on Fertility Preservation in Cancer Patients. J Clin Oncol 2006; 24: 2917–2931.
2. Macek M, Vilimova S, Potuznikova P et al. Lékařská genetika v reprodukční medicíně. Čas Lék Česk 2002; 141: 28–34.
3. Handyside AH, Kontogianni EH, Hardy K et al. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 1990; 344: 768–770.
4. Ao A, Wells D, Handyside AH et al. Preimplantation genetic diagnosis of inherited cancer: familial adenomatous polyposis coli. J Assist Reprod Genet 1998; 15: 140–144.
5. Davis T, Song B, Cram DS. Preimplantation genetic diagnosis of familial adenomatous polyposis. Reprod Biomed Online 2006; 13: 707–711.
6. Jasper MJ, Liebelt J, Hussey ND. Preimplantation genetic diagnosis for BRCA1 exon 13 duplication mutation using linked polymorphic markers resulting in a live birth. Prenat Diagn 2008; 28: 292–298.
7. Spits C, De Rycke M, Van Ranst N et al. Preimplantation genetic diagnosis for neurofibromatosis type 1. Mol Hum Reprod 2005; 11: 381–387.
8. Abou-Sleiman PM, Apessos A, Harper JC et al. First application of preimplantation genetic diagnosis to neurofibromatosis type 2 (NF2). Prenat Diagn 2002; 22: 519–524.
9. Verlinsky Y, Rechitsky S, Verlinsky O et al. Preimplantation diagnosis for p53 tumour suppressor gene mutations. Reprod Biomed Online 2001; 2: 102–105.
10. Sutterlin M, Sleiman PA, Onadim Z et al. Single cell detection of inherited retinoblastoma predisposition. Prenat Diagn 1999; 19: 1231–1236.
11. Girardet A, Hamamah S, Anahory T et al. First preimplantation genetic diagnosis of hereditary retinoblastoma using informative microsatellite markers. Mol Hum Reprod 2003; 9: 111–116.
12. Human Fertilisation and Embryology Authority (HFEA). Dostupné z http://www.hfea.gov.uk/.
13. Staton AD, Kurian AW, Cobb K et al. Cancer risk reduction and reproductive concerns in female BRCA1/2 mutation carriers. Fam Cancer 2008; 7: 179–186.
14. Menon U, Harper J, Sharma A et al. Views of BRCA gene mutation carriers on preimplantation genetic diagnosis as a reproductive option for hereditary breast and ovarian cancer. Hum Reprod Advance Access published online on April 11, 2007. Dostupné z http://humrep.oxfordjournals.org/cgi/content/full/dem055v1.
15. Kastrinos F, Stoffel EM, Balmana J et al. Attitudes toward prenatal genetic testing in patients with familial adenomatous polyposis. Am J Gastroenterol 2007; 102: 1284–1290.
16. Robertson JA. Extending preimplantation genetic diagnosis: the ethical debate Ethical issues in new uses of preimplantation genetic diagnosis. Hum Reprod 2003; 18: 465–471.
17. Wagner JE. Practical and ethical issues with genetic screening. Hematology Am Soc Hematol Educ Program 2005; 498–502.
18. Kress H. Preimplantation genetic diagnosis Ethical, social and legal aspects. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2007; 50: 157–167.
19. Simpson JL, Carson SA, Cisneros P. Preimplantation genetic diagnosis (PGD) for heritable neoplasia J Natl Cancer Inst Monogr 2005; 34: 87–90.
20. ESHRE Capri Workshop Group. Hormones and breast cancer. Hum Reprod Update 2004; 10: 281–293.
21. Azim AA, Costantini Ferrando M, Oktay K. Safety of Fertility Preservation by Ovarian Stimulation With Letrozole and Gonadotropins in Patients With Breast Cancer: A Prospective Controlled Study. J Clin Oncol 2008; 26: 2630–2635.
22. Kotsopoulos J, Librach C, Lubinski J et al. Infertility, treatment of infertility, and the risk of breast cancer among women with BRCA1 and BRCA2 mutations: a case-control study. Cancer Causes and Control 2008; 19: 1111–1119.
23. Sermon KD, Michiels A, Harton G et al. ESHRE PGD Consortium data collection VI: cycles from January to December 2003 with pregnancy follow up to October 2004. Hum Reprod 2007; 22: 323–336.
24. Verlinsky Y, Kuliev A. Current status of preimplantation diagnosis for single gene disorders. Reprod Biomed Online 2003; 7: 145–150.
25. Munne S, Dailey T, Sultan KM et al. The use of first polar bodies for preimplantation diagnosis of aneuploidy. Hum Reprod 1995; 10: 1014–1020.
26. Kuliev A, Verlinsky Y. Meiotic and mitotic nondisjunction: lessons from preimplantation genetic diagnosis Hum Reprod Update 2004; 10: 401–407.
27. Rechitsky S, Strom C, Verlinsky O et al. Accuracy of preimplantation diagnosis of single gene disorders by polar body analysis of oocytes. J Assist Reprod Genet 1999; 16: 192–198.
28. Kokkali G, Traeger-Synodinos J, Vrettou C et al. Blastocyst biopsy versus cleavage stage biopsy and blastocyst transfer for preimplantation genetic diagnosis of beta thalassaemia: a pilot study. Hum Reprod 2007; 22: 1403–1409.
29. Joris H, De Vos A, Janssens R et al. Comparison of the results of human embryo biopsy and outcome of PGD after zona drilling using acid Tyrode medium or a laser. Hum Reprod 2003; 18: 1896–1902.
30. Wells D. Advances in preimplantation genetic diagnosis. Eur J Obstet Gynecol Reprod Biol 2004; 115: S97–101.
31. Tsuchiya S, Sueoka K, Matsuda N et al. The „spanning protocol“: a new DNA extraction method for efficient single cell genetic diagnosis. J Assist Reprod Genet 2005; 22: 407–414.
32. Piyamongkol W, Bermudez MG, Harper JC et al. Detailed investigation of factors influencing amplification efficiency and allele drop-out in single cell PCR: implications for preimplantation genetic diagnosis. Mol Hum Reprod 2003; 9: 411–420.
33. Jiao Z, Zhou C, Li J et al. Birth of healthy children after preimplantation diagnosis of beta thalassemia by whole-genome amplification. Prenat Diagn 2003; 23: 646–651.
34. Zhang L, Cui X, Schmitt K et al. Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci USA 1992; 89: 5847–5851.
35. Hellani A, Coskun S, Benkhalifa M et al. Multiple displacement amplification on single cell and possible PGD applications. Mol Hum Reprod 2004; 10: 847–852.
36. Meissner C, Bruse P, Mueller E et al. A new sensitive short pentaplex (ShoP) PCR for typing of degraded DNA. Forensic Sci Int 2006; 16: 121–127.
37. Renwick PJ, Trussler J, Ostad-Saffari E et al. Proof of principle and first cases using preimplantation genetic haplotyping-a paradigm shift for embryo diagnosis. Reprod Biomed Online 2006; 13: 110–119.
38. Putzová M, Pecnová L, Hulvert J et al. Preimplantační genetická diagnostika monogenně podmíněných chorob – její možnosti, úskalí a první úspěchy v České republice. Čes Slov Pediatrie 2008; 63: 626–633.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology
2009 Issue Supplementum
Most read in this issue
- Hereditary Pancreatitis
- Gorlin Syndrome
- Multiple Endocrine Neoplasia Type 2 Syndrome
- Multiple Endocrine Neoplasia Type 1 Syndrome