Chips and Capillary Electrophoresis Based Immunoassays
Authors:
P. Štern
Authors‘ workplace:
Mimoňská 637/16, 19000 Praha
9
Published in:
Klin. Biochem. Metab., 24, 2016, No. 2, p. 57-62
Overview
The first part of the educational article covers chip application for microarray in immunochemistry. An outline of surface chemistries and labelings is presented, as well as the sensitivity of various technologies. Protein immobilization and detection using planar waveguide technology is clarified. Chip applications are shown in parallel competitive immunoassay, sandwich immunoassay and fluorescent microsphere immunoassay. The second part covers capillary electrophoresis and its use for separation after competitive and non-competitive homogeneous immunoassay or heterogeneous immunoassay. The following possibilities of analyte detection are discussed: laser-induced fluorescence, enzyme labels, chemiluminiscence, amperometry, UV/VIS absorbance, mass spectrometry and surface plasmon resonance.
Keywords:
chip, parallel competitive immunoassay, sandwich immunoassay, homogeneous CE immunoassay, heterogeneous CE immunoassay.
Sources
1. Kusnezow, W., Syagailo,Y. V., Goychuk, I., Hoheisel, J. D., Wild, D. G. Antibody microarrays: the crucial impact of mass transport on assay kinetics and sensitivity. Expert Rev. Mol. Diagn., 2006, 6(1), p. 111–124.
2. Kusnezow, W., Jacob, A., Walijew, A., Diehl, F., Hoheisel, J. D. Antibody microarrays: an evaluation of production parameters. Proteomics, 2003, 3(3), p. 254–264.
3. Angenendt, P., Glokler, J., Sobek. J., Lehrach, H., Cahill, D. J. Next generation of protein microarray support materials: evaluation for protein and antibody microarray applications. J. Chromatogr. A, 2003, 1009(1–2), p. 97–104.
4. Angenendt, P., Glokler, J., Murphy, D., Lehrach, H., Cahill, D. J. Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal. Biochem., 2002, 309(2), p. 253–260.
5. Brueggemeier, S. B., Kron, S. J., Palecek, S. Use of protein-acrylamide co-polymer hydrogels for measuring protein concentration and activity. Anal. Biochem., 2004, 329(2), p. 180–189.
6. Miller, J. C., Zhou, H., Kwekel, J., et al. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics, 2003, 3(1), 56–63.
7. Stillman, B. A., Tonkinson, J. L. FAST slides: a novel surface for microarrays. Biotechniques, 2000, 29(3), p. 630–635.
8. Haab, B. B., Dunham, M. J., Brown, P. O. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol., 2001, 2(2), RESEARCH0004.
9. Haab, B. B. Antibody arrays in cancer research. Mol. Cell. Proteomics, 2005, 4(4), p. 377–383.
10. Pawlak, M., Schick, E., Bopp, M. A., Schneider, M. J., Oroszlan, P., Ehrat, M. Zeptosens’ protein microarrays: a novel high performance microarray platform for low abundance protein analysis. Proteomics, 2002, 2(4), p. 383–393.
11. Kusnezow, W., Syagailo, Y. V., Rueffer, S. et al. Kinetics of antigen binding to antibody microarray: strong limitation by mass transport to the surface. Proteomics, 2006, 6(3), p. 794–803.
12. Pardue, H. L. The inseparable triad: analytical sensitivity, measurement uncertainty, and quantitative resolution. Clin. Chem., 1997, 43(10), p. 1831–1837.
13. Ekins, R., Edwards, P. On the meaning of ‘sensitivity’. Clin. Chem., 1997, 43(10), p. 1824–1831.
14. Brueggemeier, S. B., Kron, S. J., Palecek, S. Use of protein-acrylamide co-polymer hydrogels for measuring protein concentration and activity. Anal. Biochem., 2004, 329(2), p. 180–189.
15. Haab, B. B. Antibody arrays in cancer research Molecular & Cellular Proteomics, 2005, 4(4), p. 377–383.
16. Barry, R., Diggle, T., Terrett, J., Soloviev, M. Competitive assay formats for high-throughput affinity arrays. J. Biomol. Screen., 2003, 8, p. 257–263.
17. Schweitzer, B., Roberts, S., Grimwade, B., et al. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat. Biotechnol., 2002, 20(4), p. 359–365.
18. Saviranta, P., Okon, R., Brinker, A., Warashina, M., Eppinger, J., Geierstanger, B. H. Evaluating sandwich immunoassays in microarray format in terms of the ambient analyte regime. Clin. Chem., 2004, 50(10), p. 1907–1920.
19. Woodbury, R. L., Varnum, S. M., Zangar, R. C. Elevated HGF levels in sera from breast cancer patients detected using a protein microarray ELISA. J. Proteome Res., 2002, 1(3), p. 233–237.
20. Woolley, Ch., F., Hayes, M., A. Recent developments in emerging microimmunoassays. Bioanalysis, 2013, 5(2), p. 245–264.
21. Langenhorst, R. J., Lawson, S., Kittawornrat, A. Development of a fluorescent microsphere immunoassay for detection of antibodies against porcine reproductive and respiratory syndrome virus using oral fluid samples as an alternative to serum-based assays. Clin. Vacc. Immunol., 2011, 19, p. 180–189.
22. Vignali, D. A. A. Multiplexed particle-based flow cytometric assays. J. Immunol. Methods, 2000, 243(1-2), p. 243–255.
23. Clavijo, A., Hole, K., Li, M., Collignon, B. Simulta-neous detection of antibodies to foot-and-mouth disease non-structural proteins 3ABC, 3D, 3A and 3B by a multiplexed Luminex assay to differentiate infected from vaccinated cattle. Vaccine, 2006, 24(10), p. 1693–1704.
24. Soh, N., Tanaka, M., Hirakawa, K., et al. Sequential injection immunoassay for environmental measurements. Anal. Sci., 2011, 27(11), p. 1069–1076.
25. Moser, A. C., Hage, D. S. Capillary electrophoresis-based immunoassays: principles & quantitative applications. Electrophoresis, 2008, 29(16), p. 3279–3295.
26. German, I., Kennedy, R. T. Rapid simultaneous determination of glucagon and insulin by capillary electrophoresis immunoassays. J. Chromatogr. B Biomed. Sci. Appl., 2000, 742(2), p. 353–62.
27. Phillips, T. M., Wellner, E. F. Analysis of inflammatory biomarkers from tissue biopsies by chip-based immunoaffinity CE. Electrophoresis, 2007, 28(17), p. 3041–8.
28. Taylor, J., Picelli, G., Harrison, D. J. An evaluation of the detection limits possible for competitive capillary electrophoretic immunoassays. Electrophoresis, 2001, 22(17), p. 3699–3708.
29. Wang, J., Ren, J. A sensitive and rapid immunoassay for quantification of CA125 in human sera by capillary electrophoresis with enhanced chemiluminescence detection. Electrophoresis, 2005, 26(12), p. 2402–2408.
30. Attiya, S., Dickinson-Laing, T., Cesarz, J., et al. Affinity protection chromatography for efficient labeling of antibodies for use in affinity capillary electrophoresis. Electrophoresis, 2002, 23(5), p. 750–758.
31. Phillips, T. M., Wellner, E. Measurement of neuropeptides in clinical samples using chip-based immunoaffinity capillary electrophoresis J. Chromatogr. A., 2006, 1111(1), p. 106–111.
32. Wang, J., Huang, W., Liu, Y., Cheng, J., Yang. J. Ca-pillary electrophoresis immunoassay chemiluminescence detection of zeptomoles of bone morphogenic protein-2 in rat vascular smooth muscle cells. Anal. Chem., 2004, 76(18), p. 5393–5398.
33. Vandaveer, W. R., Pasas, S. A., Martin, R. S., Lunte, S. M. Recent developments in amperometric detection for microchip capillary electrophoresis. Electrophoresis, 2002, 23(21), p. 3667–3677.
34. Wey, A. B., Caslavska, J., Thormann, W. Analysis of codeine, dihydrocodeine and their glucuronides in human urine by electrokinetic capillary immunoassays and capillary electrophoresis – ion trap mass spektrometry J. Chromatogr. A., 2000, 895(1-2), p. 133–146.
35. Whelan, R. J., Zare, R. N. Surface plasmon resonance detection for capillary electrophoresis separations. Anal. Chem., 2003, 75(6), p. 1542–1547.
Labels
Clinical biochemistry Nuclear medicine Nutritive therapistArticle was published in
Clinical Biochemistry and Metabolism
2016 Issue 2
Most read in this issue
- Quality, control and validation of glucometers and CGM systems. Status overview
- Postanalytical phase and interpretation of laboratory tests
- Activity of phosphomannomutase 2 in patients with suspected congenital disorder of glycosylation
- The verification of the applicability of NPHS2/SYNPO ratio for diagnosis of FSGS and MCD