Correction: Risk prediction models for selection of lung cancer screening candidates: A retrospective validation study
Authors:
Kevin ten Haaf; Jihyoun Jeon; Martin C. Tammemägi; Summer S. Han; Chung Yin Kong; Sylvia K Plevritis; Eric J. Feuer; Harry J. de Koning; Ewout W. Steyerberg; Rafael Meza
Published in the journal:
Correction: Risk prediction models for selection of lung cancer screening candidates: A retrospective validation study. PLoS Med 17(9): e32767. doi:10.1371/journal.pmed.1003403
Category:
Correction
doi:
https://doi.org/10.1371/journal.pmed.1003403
The authors discovered a typographical error in S1 Appendix, page 2, regarding the description of one of the risk-prediction models (the Bach model) used. Some mathematical operators (+/- signs) were inadvertently reversed in the description of the 1-year lung cancer probability.
The mathematical operators associated with the "SMK" terms of the equation should have read:
+ (0.11425297 * SMK 〖- (0.000080091477 * (SMK– 27.6577))〗^3 for all values SMK>27
instead of + (0.11425297 * SMK 〖+ (0.000080091477 * (SMK– 27.6577))〗^3 for all values SMK>27
,
+(0.00017069483* (SMK– 40)^3) for all values SMK>40
instead of–(0.00017069483* (SMK– 40)^3) for all values SMK>40
,
-(0.000090603358* (SMK-50.910335)^3) for all values SMK>50
instead of +(0.000090603358* (SMK-50.910335)^3) for all values SMK>50
While the operators associated with the "Age"terms of the equation should have read:
+ (0.070322812 * AGE〖 - (0.00009382122* (AGE– 53.459001))〗^3 for all values AGE>53
instead of + (0.070322812 * AGE〖 + (0.00009382122* (AGE– 53.459001))〗^3 for all values AGE>53
+(0.00018282661* (AGE– 61.954825)^3) for all values AGE>61
instead of–(0.00018282661* (AGE– 61.954825)^3) for all values AGE>61
-(0.000089005389* (AGE– 70.910335)^3) for all values AGE>70
instead of +(0.000089005389* (AGE– 70.910335)^3) for all values AGE>70
The typographical error was only present in the supplementary description, the equations were correctly specified in the code of the Bach model that was applied for the analyses demonstrated throughout the main paper and the supplementary material. Please see the corrected version of S1 Appendix.
Supporting information
S1 Appendix [docx]
Lung cancer risk prediction model descriptions.
Zdroje
1. ten Haaf K, Jeon J, Tammemägi MC, Han SS, Kong CY, Plevritis SK, et al. (2017) Risk prediction models for selection of lung cancer screening candidates: A retrospective validation study. PLoS Med 14(4): e1002277. https://doi.org/10.1371/journal.pmed.1002277 28376113
Článek vyšel v časopise
PLOS Medicine
2020 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Interventions for treatment of COVID-19: A living systematic review with meta-analyses and trial sequential analyses (The LIVING Project)
- COVID-19 prevention and treatment: A critical analysis of chloroquine and hydroxychloroquine clinical pharmacology
- Comorbidities associated with mortality in 31,461 adults with COVID-19 in the United States: A federated electronic medical record analysis
- Long-term survival of children born with congenital anomalies: A systematic review and meta-analysis of population-based studies