Waldenström macroglobulinemia
Authors:
K. Baďurová 1; J. Gregorová 1; M. Vlachová 1; M. Krejčí 2; S. Ševčíková 1
Authors place of work:
Babákova myelomová skupina, Ústav patologické fyziologie, LF MU Brno
1; Interní hematologická a onkologická klinika LF MU a FN Brno
2
Published in the journal:
Klin Onkol 2021; 34(6): 428-433
Category:
Přehled
doi:
https://doi.org/10.48095/ccko2021428
Summary
Background: Waldenström macroglobulinemia (WM) is a hematological malignancy; it is a monoclonal gammopathy, a disease characterized by presence of a monoclonal immunoglobulin in serum and/or urine. The median age at diagnosis is 71 years. WM is not an aggressive disease and patients with this diagnosis can live for several years. Infiltration of the bone marrow with lymphoplasmacytoid cells causes anemia, leading to various problems, mainly fatigue. Hepatomegaly, splenomegaly and lymphadenopathy can also occur. Hyperviscosity syndrome can appear and is caused by excessive production of immunoglobulin M. A mutation in MYD88 gene is detected in almost every WM patient, and in almost one third of them, a mutation in CXCR4 gene is detected. The detection of MYD88 mutation is important for a correct therapeutic strategy, since a Bruton’s tyrosine kinase inhibitor, ibrutinib, is most effective in patients with mutated MYD88 and wt CXCR4. The therapy is started when first symptoms occur. Purpose: The aim of this study is to summarize current knowledge about this disease, its diagnostics, molecular basis and treatment.
Keywords:
incidence – Mutation – Prognosis – mikroRNA – Waldenström macroglobulinemia
Zdroje
1. Wang H, Chen Y, Li F et al. Temporal and geographic variations of Waldenstrom macroglobulinemia incidence: a large population-based study. Cancer 2012; 118 (15): 3793–3800. doi: 10.1002/cncr.26627.
2. Glavey SV, Leung N. Monoclonal gammopathy: the good, the bad and the ugly. Blood Rev 2016; 30 (3): 223–231. doi: 10.1016/j.blre.2015.12.001.
3. Steingrímsson V, Lund SH, Turesson I et al. Population-based study on the impact of the familial form of Waldenström macroglobulinemia on overall survival. Blood 2015; 125 (13): 2174–2175. doi: 10.1182/blood-2015-01-622068.
4. Kyle RA, Anderson KC. A tribute to Jan Gosta Waldenström. Blood 1997; 89 (12): 4245–4247.
5. Kyle RA, Gleich GJ, Bayrid ED et al. Benign hypergammaglobulinemic purpura of Waldenström. Medicine (Baltimore) 1971; 50 (2): 113–123.
6. Waldenström J. Incipient myelomatosis or eessentiala hyperglobulinemia with fibrinogenopenia – a new syndrome? J Int Med 1944; 117: 3–4.
7. Björkholm M, Johansson E, Papamichael D et al. Patterns of clinical presentation, treatment, and outcome in patients with Waldenstrom’s macroglobulinemia: a two-institution study. Semin Oncol 2003; 30 (2): 226–230. doi: 10.1053/sonc.2003.50054.
8. Dimopoulos MA, Anagnostopoulos A. Waldenström’s macroglobulinemia. Best Pract Res Clin Haematol 2005; 18 (4): 747–765. doi: 10.1016/j.beha.2005.01.028.
9. Baehring JM, Hochberg EP, Raje N et al. Neurological manifestations of Waldenström macroglobulinemia. Nat Clin Pract Neurol 2008; 4 (10): 547–556. doi: 10.1038/ncpneuro0917.
10. Berentsen S. Cold agglutinin-mediated autoimmune hemolytic anemia in Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma 2009; 9 (1): 110–112. doi: 10.3816/CLM.2009.n.030.
11. Stone M. Waldenström’s macroglobulinemia: hyperviscosity syndrome and cryoglobulinemia. Clin Lymphoma Myeloma 2009; 9 (1): 97–99. doi: 10.3816/CLM.2009.n.026.
12. Gertz MA. Waldenström macroglobulinemia: 2019 update on diagnosis, risk stratification, and management. Am J Hematol 2019; 94 (2): 266–276. doi: 10.1002/ajh.25292.
13. Adam Z, Pour L, Krejčí M et al. Změny v prognóze a v léčbě Waldenströmovy makroglobulinemie : přehled literatury a vlastní zkušenosti. Vnitr Lek 2016; 62 (1): 25–39.
14. Paiva B, Corchete LA, Vidriales MB et al. The cellular origin and malignant transformation of Waldenström macroglobulinemia. Blood 2015; 125 (15): 2370–2380. doi: 10.1182/blood-2014-09-602565.
15. Kyle RA, Therneau TM, Rajkumar SV et al. Long-term follow-up of IgM monoclonal gammopathy of undetermined significance. Blood 2003; 102 (10): 3759–3764. doi: 10.1182/blood-2003-03-0801.
16. Adam Z, Šmardová J, Ščudla V. Waldenströmova makroglobulinemie: klinické projevy a diferenciální diagnostika a prognóza nemoci. Vnitr Lek 2007; 53 (12): 1325–1337.
17. Castillo JJ, Olszewski AJ, Kanan S et al. Overall survival and competing risks of death in patients with Waldenström macroglobulinaemia: an analysis of the Surveillance, Epidemiology and End Results database. Br J Haematol 2015; 169 (1): 81–89. doi: 10.1111/bjh.13264.
18. Gertz MA. Waldenström macroglobulinemia: 2021 update on diagnosis, risk stratification, and management. Am J Hematol 2021; 96 (2): 258–269. doi: 10.1002/ajh.26082.
19. Gertz MA. How is Waldenström’s macroglobulinemia diagnosed? IWMF Torch 2008.
20. Kaščák M, Hájek R, Minařík J et al. Diagnostika a léčba Waldenströmovy makroglobulinemie. Transfuze Hematol Dnes 2019; 25 (Suppl. 1): 7–22.
21. Lin S-C, Lo Y-C, Wu H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 2010; 465 (7300): 885–890. doi: 10.1038/nature09121.
22. Yang G, Zhou Y, Liu X et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia. Blood 2013; 122 (7): 1222–1232. doi: 10.1182/blood-2012-12-475111.
23. Treon SP, Xu L, Guerrera ML et al. Genomic landscape of Waldenström macroglobulinemia and its impact on treatment strategies. J Clin Oncol 2020; 38 (11): 1198–1208. doi: 10.1200/JCO.19.02314.
24. Munshi M, Liu X, Chen JG et al. SYK is activated by mutated MYD88 and drives pro-survival signaling in MYD88 driven B-cell lymphomas. Blood Cancer J 2020; 10 (1): 12. doi: 10.1038/s41408-020-0277-6.
25. Manček-Keber M, Lainšček D, Benčina M et al. Extracellular vesicle-mediated transfer of constitutively active MyD88 (L265P) engages MyD88 (wt) and activates signaling. Blood 2018; 131 (15): 1720–1729. doi: 10.1182/blood-2017-09-805499.
26. Poulain S, Roumier C, Decambron A et al. MYD88 L265P mutation in Waldenstrom macroglobulinemia. Blood 2013; 121 (22): 4504–4511. doi: 10.1182/blood-2012-06-436329.
27. Jiménez C, Sebastián E, Chillón MC et al. MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenström’s macroglobulinemia. Leukemia 2013; 27 (8): 1722–1728. doi: 10.1038/leu.2013.62.
28. Poulain S, Roumier C, Venet-Caillault A et al. Genomic landscape of CXCR4 mutations in Waldenström macroglobulinemia. Clin Cancer Res 2016; 22 (6): 1480–1488. doi: 10.1158/1078-0432.CCR-15-0646.
29. Nie Y, Waite J, Brewer F et al. The role of CXCR4 in maintaining peripheral B cell compartments and humoral immunity. J Exp Med 2004; 200 (9): 1145–1156. doi: 10.1084/jem.20041185.
30. Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res 2014; 124: 31–82. doi: 10.1016/B978-0-12-411638-2.00002-1.
31. Hunter ZR, Xu L, Yang G et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood 2014; 123 (11): 1637–1646. doi: 10.1182/blood-2013-09-525808.
32. Treon SP, Cao Y, Xu L et al. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood 2014; 123 (18): 2791–2796. doi: 10.1182/blood-2014-01-550905.
33. Roccaro AM, Sacco A, Jimenez C et al. C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood 2014; 123 (26): 4120–4131. doi: 10.1182/blood-2014-03-564583.
34. Cao Y, Hunter ZR, Liu X et al. The WHIM-like CXCR4 (S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s macroglobulinemia. Leukemia 2015; 29 (1): 169–176. doi: 10.1038/leu.2014.187.
35. Xu L, Hunter ZR, Tsakmaklis N et al. Clonal architecture of CXCR4 WHIM-like mutations in Waldenström macroglobulinaemia. Br J Haematol 2016; 172 (5): 735–744. doi: 10.1111/bjh.13897.
36. Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 2009; 27 (34): 5848–5856. doi: 10.1200/JCO.2009.24.0317.
37. Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004; 431 (7006): 343–349. doi: 10.1038/nature02873.
38. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116 (2): 281–297. doi: 10.1016/s0092-8674 (04) 00045-5.
39. Hodge LS, Elsawa SF, Grote DM et al. MicroRNA expression in tumor cells from Waldenstrom’s macroglobulinemia reflects both their normal and malignant cell counterparts. Blood Cancer J 2011; 1 (6): e24. doi: 10.1038/bcj.2011.25.
40. Chen CZ, Li L, Lodish HF et al. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303 (5654): 83–86. doi: 10.1126/science.1091903.
41. Roccaro AM, Sacco A, Chen C et al. MicroRNA expression in the biology, prognosis, and therapy of Waldenström macroglobulinemia. Blood 2009; 113 (18): 4391–4402. doi: 10.1182/blood-2008-09-178228.
42. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002; 2 (8): 569–579. doi: 10.1038/nri855.
43. Melo SA, Sugimoto H, O’Connell JT et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 2014; 26 (5): 707–721. doi: 10.1016/j.ccell.2014.09.005.
44. Zhang J, Li S, Li L et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 2015; 13 (1): 17–24. doi: 10.1016/j.gpb.2015.02.001.
45. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008; 110 (1): 13–21. doi: 10.1016/j.ygyno.2008.04.033.
46. Bouyssou JM, Liu CJ, Bustoros M et al. Profiling of circulating exosomal miRNAs in patients with Waldenström Macroglobulinemia. PLoS One 2018; 13 (10): 1–16. doi: 10.1371/journal.pone.0204589.
47. Varettoni M, Arcaini L, Zibellini S et al. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenström’s macroglobulinemia and related lymphoid neoplasms. Blood 2013; 121 (13): 2522–2528. doi: 10.1182/blood-2012-09-457101.
48. Grimont CN, Castillo Almeida NE, Gertz MA. Current and emerging treatments for Waldenström macroglobulinemia. Acta Haematol 2020; 144 (2): 146–157.
doi: 10.1159/000509286.
49. Abeykoon JP, Yanamandra U, Kapoor P. New developments in the management of Waldenström macroglobulinemia. Cancer Manag Res 2017; 9: 73–83. doi: 10.2147/CMAR.S94059.
50. DeVita VT, Chu E. A history of cancer chemotherapy. Cancer Res 2008; 68 (21): 8643–8653. doi: 10.1158/0008-5472.CAN-07-6611.
51. Puyo S, Montaudon D, Pourquier P. From old alkylating agents to new minor groove binders. Crit Rev Oncol Hematol 2014; 89 (1): 43–61. doi: 10.1016/j.critrevonc.2013.07.006.
52. Martin P, Chen Z, Cheson BD et al. Long-term outcomes, secondary malignancies and stem cell collection following bendamustine in patients with previously treated non-Hodgkin lymphoma. Br J Haematol 2017; 178 (2): 250–256. doi: 10.1111/bjh.14667.
53. International Waldenstrom’s Macroglobulinemia Foundation. Waldenstrom’s macroglobulinemia a guide to treatment options: chemotherapy – alkylating agents and nucleoside analogs. [online]. Dostupné z URL: https: //iwmf.com/media-library/download-iwmf-publications.
54. Olszewski AJ, Treon SP, Castillo JJ. Evolution of management and outcomes in Waldenström macroglobulinemia: a population-based analysis. Oncologist 2016; 21 (11): 1377–1386. doi: 10.1634/theoncologist.2016-0126.
55. Scott AM, Allison JP, Wolchok JD. Monoclonal antibodies in cancer therapy. Cancer Immun 2012; 12: 14.
56. Singh S, Kumar NK, Dwiwedi P et al. Monoclonal antibodies: a review. Curr Clin Pharmacol 2018; 13 (2): 85–99. doi: 10.2174/1574884712666170809124728.
57. International Waldenstrom’s Macroglobulinemia Foundation. Waldenstrom’s macroglobulinemia a guide to treatment options: monoclonal antibodies. [online]. Dostupné z URL: https: //iwmf.com/media-library/download-iwmf-publications.
58. Stern M, Herrmann R. Overview of monoclonal antibodies in cancer therapy: present and promise. Crit Rev Oncol Hematol 2005; 54 (1): 11–29. doi: 10.1016/j.critrevonc.2004.10.011.
59. Rougé L, Chiang N, Steffek M et al. Structure of CD20 in complex with the therapeutic monoclonal antibody rituximab. Science 2020; 367 (6483): 1224–1230. doi: 10.1126/science.aaz9356.
60. Bergantini L, d’Alessandro M, Cameli P et al. Effects of rituximab therapy on B cell differentiation and depletion. Clin Rheumatol 2020; 39 (5): 1415–1421. doi: 10.1007/s10067-020-04996-7.
61. International Waldenstrom’s Macroglobulinemia Foundation. Waldenstrom’s macroglobulinemia a guide to treatment options: proteasome inhibitors. [online]. Dostupné z URL: https: //iwmf.com/media-library/download-iwmf-publications.
62. Paramore A, Frantz S. Bortezomib. Nat Rev Drug Discov 2003; 2 (8): 611–612. doi: 10.1038/nrd1159.
63. Herman SEM, Gordon AL, Hertlein E et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 2011; 117 (23): 6287–6296. doi: 10.1182/blood-2011-01-328484.
64. Wang ML, Rule S, Martin P et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med 2013; 369 (6): 507–516. doi: 10.1056/ NEJMoa1306220.
65. Gu D, Tang H, Wu J et al. Targeting Bruton tyrosine kinase using non-covalent inhibitors in B cell malignancies. J Hematol Oncol 2021; 14 (1): 40. doi: 10.1186/s13045-021-01049-7.
66. Zanwar S, Abeykoon JP, Kapoor P. Novel treatment strategies in the management of Waldenström macroglobulinemia. Curr Hematol Malig Rep 2020; 15 (1): 31–43. doi: 10.1007/s11899-020-00559-4.
67. Despina F, Meletios Athanasios D, Efstathios K. Emerging drugs for the treatment of Waldenström macroglobulinemia. Expert Opin Emerg Drugs 2020; 25 (4): 433–444. doi: 10.1080/14728214.2020.1822816.
68. Dimopoulos MA, Trotman J, Tedeschi A et al. Ibrutinib for patients with rituximab-refractory Waldenström’s macroglobulinaemia (iNNOVATE): an open-label substudy of an international, multicentre, phase 3 trial. Lancet Oncol 2017; 18 (2): 241–250. doi: 10.1016/S1470-2045 (16) 30632-5.
Štítky
Dětská onkologie Chirurgie všeobecná OnkologieČlánek vyšel v časopise
Klinická onkologie
2021 Číslo 6
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Management pacientů s MPN a neobvyklou kombinací genových přestaveb – systematický přehled a kazuistiky
- Management péče o pacientku s karcinomem ovaria a neočekávanou mutací CDH1 – kazuistika
- Neodolpasse je bezpečný přípravek v krátkodobé léčbě bolesti
- Cinitaprid – v Česku nová účinná látka nejen pro léčbu dysmotilitní dyspepsie
Nejčtenější v tomto čísle
- Waldenströmova makroglobulinemie
- Erdheimova-Chesterova choroba
- Pokročilá stadia klasického Hodgkinova lymfomu – možnosti první linie léčby
- Doporučení pro preventivní a léčebnou péči o kůži pacientů podstupujících radioterapii