#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Q fever and prevention


Authors: L. Škultéty
Authors place of work: Mikrobiologický ústav AV ČR, v. v. i., Praha
Published in the journal: Epidemiol. Mikrobiol. Imunol. 69, 2020, č. 2, s. 87-94
Category: Souhrnná sdělení

Summary

Coxiella burnetii is an intracellular, Gram-negative bacterium and the etiological agent of Q fever, a worldwide zoonotic disease with a considerable economic impact in the livestock industry. Domesticated ruminants like cattle, sheep, and goats are the main reservoirs of Q fever in men. Humans usually acquire the disease by inhaling contaminated aerosol produced by infected livestock. Acute infection is typically asymptomatic or manifests as a febrile flu-like illness or pneumonia. In 1–5% of primary infections, chronic Q fever may develop, which can be life-threatening and often presents as endocarditis.

Q fever outbreaks usually occur from occupational exposure involving shepherds, veterinarians, animal handlers, abattoir or dairy workers, and laboratory personnel working with C. burnetii. Thus, prevention and control efforts should be primarily directed toward these groups and the surrounding environment. The most effective way of prophylaxis is vaccination. Although clinical data are lacking, vaccination should also be considered for persons who are at higher risk for development of chronic Q fever, including those with cardiac valve defects, vascular aneurysms, and immunocompromised patients. Therefore, development of an effective and harmless vaccine is a subject of constant interest of researchers for decades. This review summarizes the progress toward Q fever vaccine development.

Keywords:

Coxiella burnetii – Q-fever – vaccine


Zdroje

1. Benenson AS, Tigertt WD. Studies on Q fever in man. Trans Assoc Am Physicians, 1956;69:98-104.

2. Fiset P, Woodward TE. Q Fever. In: Evans AS, Feldman HA. Bacterial Infections of Humans. Boston, MA: Springer US; 1982. s. 435-448.

3. Marrie TJ. Q fever - a review. Can Vet J, 1990;31(8):555-563.

4. Hornstra HM, Priestley RA, Georgia SM, et al. Rapid typing of Coxiella burnetii. PLoS One, 2011;6(11):e26201.

5. Massung RF, Dasch GA, Eremeeva ME. Rickettsia and Coxiella. In: Budowle B, Schutzer SE, Breeze RG, et al. Microbial Forensics, 2nd edition. Cambridge, MA: Academic Press US; 2011. s. 277-295.

6. Gürtler L, Bauerfeind U, Blümel J, et al. Coxiella burnetii - Pathogenic Agent of Q (Query) Fever. Transfus Med Hemotherapy, 2014;41(1):60-72.

7. Howe D, Mallavia LP. Coxiella burnetii exhibits morphological change and delays phagolysosomal fusion after internalization by J774A.1 cells. Infect Immun, 2000;68(7):3815-3821.

8. Minnick MF, Raghavan R. Developmental biology of Coxiella burnetii. In: Toman R, Heinzen R, Samuel J, et al. Coxiella burnetii: Recent advances and new perspectives in research of the Q Fever bacterium: Advances in experimental medicine and biology (vol 984). Dordrecht: Springer; 2012. s. 231-248.

9. Hotta A, Kawamura M, To H, et al. Phase variation analysis of Coxiella burnetii during serial passage in cell culture by use of monoclonal antibodies. Infect Immun, 2002;70(8):4747-4749.

10. Toman R, Skultety L, Ftacek P, et al. NMR study of virenose and dihydrohydroxystreptose isolated from Coxiella burnetii phase I lipopolysaccharide. Carbohydr Res, 1998;306(1-2):291-296.

11. Ftácek P, Skultéty L, Toman R, et al. Phase variation of Coxiella burnetii strain Priscilla: Influence of this phenomenon on biochemical features of its lipopolysaccharide. J Endotoxin Res, 2000;6(5):369-376.

12. Slabá K, Škultéty L, Toman R, Slaba K, Skultety L, Toman R. Efficiency of various serological techniques for diagnosing Coxiella burnetii infection. Acta Virol, 2005;49(2):123-127.

13. Clark IA. Resistance to Babesia spp. and plasmodium sp. in mice pretreated with an extract of Coxiella burnetii. Infect Immun, 1979;24(2):319-325.

14. Kelly MT, Granger DL, Ribi E, Milner KC, Strain SM, Stoenner HG. Tumor regression with Q fever rickettsiae and a mycobacterial glycolipid. Cancer Immunol Immunother, 1976;1(3):187-191.

15. Rolph MS, Mahalingam S, Cowden WB. Nonspecific antiviral immunity by formalin-fixed Coxiella burnetii is enhanced in the absence of nitric oxide. Virology, 2004;326(1):1-5.

16. Waag DM, Kende M, Damrow TA, Wood OL, Williams JC. Injection of inactivated phase I Coxiella burnetii increases non-specific resistance to infection and stimulates lymphokine production in mice. Ann N Y Acad Sci, 1990;590(1):203-214.

17. Zvilich M, Williams JC, Waag D, et al. Characterization of the non-specific humoral and cellular antiviral immunity stimulated by the chloroform-methanol residue (CMR) fraction of Coxiella burnetii. Antiviral Res, 1995;27(4):389-404.

18. Koster FT, Williams JC, Goodwin JS. Cellular immunity in Q fever: modulation of responsiveness by a suppressor T cell-monocyte circuit. J Immunol, 1985;135(2):1067-1072.

19. Parker NR, Barralet JH, Bell AM. Seminar Q fever. Lancet, 2006;367(9511):679-688.

20. Arricau-Bouvery N, Rodolakis A. Is Q Fever an emerging or re-emerging zoonosis? Vet Res, 2005;36(3):327-349.

21. Shapiro AJ, Bosward KL, Heller J, Norris JM. Seroprevalence of Coxiella burnetii in domesticated and feral cats in eastern Australia. Vet Microbiol, 2015;177(1-2):154-161.

22. Špitalská E, Sparagano O, Stanko M, et al. Diversity of Coxiella-like and Francisella-like endosymbionts, and Rickettsia spp., Coxiella burnetii as pathogens in the tick populations of Slovakia, Central Europe. Ticks Tick Borne Dis, 2018;9(5):1207-1211.

23. Van den Brom R, van Engelen E, Roest HIJ, et al. Coxiella burnetii infections in sheep or goats: an opinionated review. Vet Microbiol, 2015;181(1-2):119-129.

24. Roest HIJ, Bossers A, van Zijderveld FG, et al. Clinical microbiology of Coxiella burnetii and relevant aspects for the diagnosis and control of the zoonotic disease Q fever. Vet Q, 2013;33(3):148-160.

25. Honarmand H. Q fever: An old but still a poorly understood disease. Interdiscip Perspect Infect Dis, 2012;2012:Article ID 131932.

26. Gyuranecz M, Sulyok KM, Balla E, et al. Q fever epidemic in Hungary, April to July 2013. Eurosurveillance, 2014;19(30):9-13.

27. Rodolakis A, Berri M, He C, et al. Comparison of Coxiella burnetii shedding in milk of dairy bovine, caprine, and ovine herds. J Dairy Sci, 2007;90(12):5352-5360.

28. Anderson A, Bijlmer H, Fournier PE, et al. Diagnosis and management of Q fever - United States, 2013: Recommendations from CDC and the Q fever working group. MMWR Recomm Reports, 2013;62:1-23.

29. Raoult D, Marrie TJ, Mege JL. Natural history and pathophysiology of Q fever. Lancet Infect Dis, 2005;5(4):219-226.

30. Cutler SJ, Bouzid M, Cutler RR. Q fever. J Infect. 2007;54(4):313-318.

31. Bielawska-Drozd A, Cieslik P, Mirski T, et al. Q fever - selected issues. Ann Agric Environ Med, 2013;20(2):222-232.

32. Morroy G, Keijmel SP, Delsing CE, et al. Fatigue following acute Q-fever: A systematic literature review. PLoS One, 2016;11(5):e0155884.

33. Melenotte C, Protopopescu C, Million M, et al. Clinical features and complications of Coxiella burnetii infections from the french national reference center for Q Fever. JAMA Netw open, 2018;1(4):e181580.

34. Brouqui P. Chronic Q fever. Arch Intern Med, 1993;153(5):642-648.

35. Esmaeili S, Mostafavi E, Shahdordizadeh M, Mahmoudi H. A seroepidemiological survey of Q fever among sheep in Mazandaran province, northern Iran. Ann Agric Environ Med, 2013;20(4):708-710.

36. Esmaeili S, Pourhossein B, Gouya MM, Amiri FB, Mostafavi E. Seroepidemiological survey of Q fever and brucellosis in Kurdistan province, western Iran. Vector Borne Zoonotic Dis, 2014;14(1):41-45.

37. Royal J, Riddle MS, Mohareb E, et al. Seroepidemiologic survey for Coxiella burnetii among US military personnel deployed to southwest and central asia in 2005. Am J Trop Med Hyg, 2013;89(5):991-995.

38. Anderson AD, Baker TR, Littrell AC, et al. Seroepidemiologic survey for Coxiella burnetii among hospitalized US troops deployed to Iraq. Zoonoses Public Health, 2011;58(4):276-283.

39. Faix DJ, Harrison DJ, Riddle MS, et al. Outbreak of Q fever among US military in western Iraq, June–July 2005. Clin Infect Dis, 2008;46(7):e65–e68.

40. Bailey MS, Trinick TR, Dunbar JA, et al. Undifferentiated febrile illnesses amongst british troops in Helmand, Afghanistan. J R Army Med Corps, 2011;157(2):150-155.

41. Madariaga MG, Rezai K, Trenholme GM, et al. Q fever: a biological weapon in your backyard. Lancet Infect Dis, 2003;3(11):709-721.

42. Martin J, Christopher G, Eitzen E. History of biological weapons: from poisoned darts to intentional epidemics. In: Dembek ZF. Textbooks of military medicine. Medical aspects of biological warfare, Washington, DC: Borden Institute; 2007. s. 1-20.

43. Oyston PCF, Davies C. Q fever: the neglected biothreat agent. J Med Microbiol, 2011;60(1):9-21.

44. Pittman PR, Norris SL, Coonan KM, et al. An assessment of health status among medical research volunteers who served in the project whitecoat program at Fort Detrick, Maryland. Mil Med, 2005;170(3):183-187.

45. Bellamy RJ. Bioterrorism. QJM, 2001;94(4):227-234.

46. Shoham D, Wolfson Z. The Russian biological weapons program: Vanished or disappeared? Crit Rev Microbiol, 2004;30(4):241-261.

47. Garner MG, Longbottom HM, Cannon RM, et al. A review of Q fever in Australia 1991-1994. Aust N Z J Public Health, 1997;21(7):722-730.

48. Fournier PE, Marrie TJ, Raoult D. Diagnosis of Q fever. J Clin Microbiol, 1998;36(7):1823-1834.

49. Plummer PJ, McClure JT, Menzies P, et al. Management of Coxiella burnetii infection in livestock populations and the associated zoonotic risk: A consensus statement. J Vet Intern Med, 2018;32(5):1481-1494.

50. Porter SR, Czaplicki G, Mainil J, et al. Q Fever: Current state of knowledge and perspectives of research of a neglected zoonosis. Int J Microbiol, 2011;2011:1-22.

51. Forland F, Jansen A, de Carvalho Gomes H, et al. Risk assessment on Q fever. Stockholm; European Centre for Disease Prevention and Control; 2010.

52. Marmion B. Q fever: the long journey to control by vaccination. Med J Aust, 2007;186(4):164-166.

53. Gefenaite G, Munster JM, van Houdt R, et al. Effectiveness of the Q fever vaccine: A meta-analysis. Vaccine, 2011;29(3):395-398.

54. Sellens E, Norris JM, Dhand NK, et al. Q Fever Knowledge, Attitudes and vaccination status of Australia’s veterinary workforce in 2014. PLoS One, 2016;11(1):e0146819.

55. Sellens E, Norris JM, Dhand NK, et al. Willingness of veterinarians in Australia to recommend Q fever vaccination in veterinary personnel: Implications for workplace health and safety compliance. PLoS One, 2018;13(6):e0198421.

56. Kersh GJ, Fitzpatrick KA, Self JS, et al. Long-term immune responses to Coxiella burnetii after vaccination. Clin Vaccine Immunol, 2013;20(2):129-133.

57. Gidding HF, Wallace C, Lawrence GL, et al. Australia’s national Q fever vaccination program. Vaccine, 2009;27(14):2037-2041.

58. Ruiz S, Wolfe DN. Vaccination against Q fever for biodefense and public health indications. Front Microbiol, 2014;5:Article 726.

59. Kazár J, Řeháček J. Q fever vaccines: Present status and application in man. Zentralblatt für Bakteriol Mikrobiol und Hyg Ser A Med Microbiol Infect Dis Virol Parasitol, 1987;267(1):74-78.

60. Smadel JE, Snyder MJ, Robbins FC. Vaccination against Q fever. Am J Epidemiol, 1948;47(1):71-81.

61. Brezina R. Antigény a imunita pri Q horúčke. Bratislava: VEDA; 1977.

62. Schulze LSC, Borchardt S, Ouellet V, et al. Effect of a phase I Coxiella burnetii inactivated vaccine on body temperature and milk yield in dairy cows. J Dairy Sci, 2016;99(1):541-550.

63. Scott GH, McCaul TF, Williams JC. Inactivation of Coxiella burnetii by gamma irradiation. J Gen Microbiol, 1989;135(12):3263-3270.

64. Hendrix LR, Chen C. Antigenic analysis for vaccines and diagnostics. In: Toman R, Heinzen R, Samuel J, et al. Coxiella burnetii: Recent advances and new perspectives in research of the Q Fever bacterium: Advances in experimental medicine and biology (vol 984). Dordrecht: Springer; 2012. s. 299-328.

65. Zhang G, Zhang Y, Samuel JE. Components of protective immunity. Adv Exp Med Biol, 2012;984:91-104.

66. Stoker MG. Latent infections with viruses and rickettsiae. Br Med J, 1957;1:963–968.

67. Trubiano JA, Holmes NE, Williams DS, et al. Coxiella burnetii endocarditis after Q fever vaccination. J Med Microbiol, 2012;61:1775-1779.

68. Lackman DB, Bell EJ, Bell JF, et al. Intradermal sensitivity testing in man with a purified vaccine for Q fever. Am J Public Health, 1962;52(1):87-93.

69. Isken LD, Kraaij-Dirkzwager M, Vermeer-de Bondt PE, et al. Implementation of a Q fever vaccination program for high-risk patients in the Netherlands. Vaccine, 2013;31(23):2617-2622.

70. Waag DM. Coxiella burnetii: Host and bacterial responses to infection. Vaccine, 2007;25(42):7288-7295.

71. Genig VA. A live vaccine 1-M-44 against Q-fever for oral use. J Hyg Epidemiol Microbiol Immunol, 1968;12(3):265-273.

72. Zdrodovskij PF, Genig VA. The problem of a live vaccine against Q fever (Article in Russian). Vopr Virusol, 1962;7:355-359.

73. Robinson DM, Hasty SE. Production of a potent vaccine from the attenuated M-44 strain of Coxiella burneti. Appl Microbiol, 1974;27(4):777-783.

74. Freylikhman O, Tokarevich N, Suvorov A, et al. Coxiella burnetii persistence in three generations of mice after application of live attenuated human M-44 vaccine against Q fever. Ann N Y Acad Sci. 2003;990(1):496–499.

75. Anacker RL, Lackman DB, Pickens EG, et al. Antigenic and skin-reactive properties of fractions of Coxiella burnetii. J Immunol, 1962;89(1):145-153.

76. Kazár J, Brezina R, Palanová A, et al. Immunogenicity and reactogenicity of a Q fever chemovaccine in persons professionally exposed to Q fever in Czechoslovakia. Bull World Health Organ, 1982;60(3):389-394.

77. Flores-Ramírez G, Kmeťová M, Danchenko M, et al. Protein composition of the phase I Coxiella burnetii soluble antigen prepared by extraction with trichloroacetic acid. Acta Virol, 2017;61:361-368.

78. Williams JC, Cantrell JL. Biological and immunological properties of Coxiella burnetii vaccines in C57BL/10ScN endotoxin-nonresponder mice. Infect Immun, 1982;35(3):1091-1102.

79. Williams JC, Damrow TA, Waag DM, et al. Characterization of a phase I Coxiella burnetii chloroform-methanol residue vaccine that induces active immunity against Q fever in C57BL/10 ScN mice. Infect Immun, 1986;51(3):851-858.

80. Williams JC, Peacok MG, Waag DM, et al. Vaccines against coxiellosis and Q fever development of a chloroform:methanol residue subunit of phase I Coxiella burnetii for the immunization of animals. Ann N Y Acad Sci, 1992;653:88-111.

81. Waag DM, England MJ, Bolt CR, et al. Low-dose priming before vaccination with the phase I chloroform-methanol residue vaccine against Q fever enhances humoral and cellular immune responses to Coxiella burnetii. Clin Vaccine Immunol, 2008;15(10):1505-1512.

82. Waag DM, England MJ, Tammariello RF, et al. Comparative efficacy and immunogenicity of Q fever chloroform:methanol residue (CMR) and phase I cellular (Q-Vax) vaccines in cynomolgus monkeys challenged by aerosol. Vaccine, 2002;20(19-20):2623-2634.

83. Smith H. The search for protective antigens. Br Med Bull, 1969;25(2):126-130.

84. Humphres RC, Hinrichs DJ. Role of antibody in Coxiella burnetii infection. Infect Immun, 1981;31(2):641-645.

85. Read AJ, Erickson S, Harmsen AG. Role of CD4+ and CD8+ T cells in clearance of primary pulmonary infection with Coxiella burnetii. Infect Immun, 2010;78(7):3019-3026.

86. Zhang G, Russell-Lodrigue KE, Andoh M, et al. Mechanisms of vaccine-induced protective immunity against Coxiella burnetii infection in BALB/c mice. J Immunol, 2007;179(12):8372-8380.

87. Tough DF, Sun S, Sprent J. T-cell stimulation in vivo by lipopolysaccharide (LPS). J Exp Med, 1997;185(12):2089-2094.

88. Karahan M, Arayıcı PP, Mustafaeva ZA, et al. Development of new age vaccine models against Q fever. In: Book of abstracts from the 6th. EuCheMS Chemistry Congress. Seville, Spain. 2016. Dostupný na: doi:10.13140/RG.2.2.34469.50401.

89. Peng Y, Zhang Y, Mitchell WJ, et al. Development of a lipopolysaccharide-targeted peptide mimic vaccine against Q fever. J Immunol, 2012;189(10):4909-4920.

90. Flores-Ramírez G, Danchenko M, Quevedo-Díaz M, et al. Reliable tool for detection of novel Coxiella burnetii antigens, using immobilized human polyclonal antibodies. J Chromatogr B Analyt Technol Biomed Life Sci, 2017;1047:84-91.

91. Gerlach C, Škultéty L, Henning K, et al. Coxiella burnetii immunogenic proteins as a basis for new Q fever diagnostic and vaccine development. Acta Virol, 2017;61(3):377-390.

92. Varghees S, Kiss K, Frans G, et al. Cloning and porin activity of the major outer membrane protein P1 from Coxiella burnetii. Infect Immun, 2002;70(12):6741-6750.

93. Xiong X, Meng Y, Wang X, et al. Mice immunized with bone marrow-derived dendritic cells stimulated with recombinant Coxiella burnetii Com1 and Mip demonstrate enhanced bacterial clearance in association with a Th1 immune response. Vaccine, 2012;30(48):6809-6815.

94. Li Q, Niu D, Wen B, et al. Protective immunity against Q fever induced with a recombinant P1 antigen fused with HspB of Coxiella burnetii. Ann N Y Acad Sci, 2005;1063(1):130-142.

95. Wei Y, Wang X, Xiong X, Wen B. Coxiella burnetii antigen-stimulated dendritic cells mediated protection against Coxiella burnetii in BALB/c mice. J Infect Dis, 2011;203(2):283-291.

96. Wang Y, Xiong X, Wu D, et al. Efficient activation of T cells by human monocyte-derived dendritic cells (HMDCs) pulsed with Coxiella burnetii outer membrane protein Com1 but not by HspB-pulsed HMDCs. BMC Immunol, 2011;12:Article number 52.

97. Chen C, Dow C, Wang P, et al. Identification of CD4+ T cell epitopes in C. burnetii antigens targeted by antibody responses. PLoS One, 2011;6(3):e17712.

98. Scholzen A, Richard G, Moise L, et al. Promiscuous Coxiella burnetii CD4 epitope clusters associated with human recall responses are candidates for a novel T-cell targeted multi-epitope Q fever vaccine. Front Immunol, 2019;10:207.

99. Reeves PM, Paul SR, Sluder AE, et al. Q-vaxcelerate: A distributed development approach for a new Coxiella burnetii vaccine. Hum Vaccin Immunother, 2017;13(12):2977-2981.

100. Vigil A, Chen C, Jain A, et al. Profiling the humoral immune response of acute and chronic Q fever by protein microarray. Mol Cell Proteomics, 2011;10(10):M110.006304.

101. Gong W, Wang P, Xiong X, et al. Chloroform-methanol residue of Coxiella burnetii markedly potentiated the specific immunoprotection elicited by a recombinant protein fragment rOmpB-4 derived from outer membrane protein B of Rickettsia rickettsii in C3H/HeN mice. PLoS One, 2015;10(4):e0124664.

Štítky
Hygiena a epidemiologie Infekční lékařství Mikrobiologie

Článek vyšel v časopise

Epidemiologie, mikrobiologie, imunologie

Číslo 2

2020 Číslo 2
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 3/2024 (znalostní test z časopisu)
nový kurz

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#