#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The impact of the various blood collection methods and the leukodepletion on the quality of the cryopreserved red blood cells


Authors: M. Bohoněk;  M. Petráš;  I. Turek;  J. Urbanová;  T. Hrádek;  V. Staropražská;  J. Koštířová;  D. Horčičková;  S. Duchková
Authors‘ workplace: Oddělení hematologie, biochemie a krevní transfuze, Ústřední vojenská nemocnice Praha
Published in: Transfuze Hematol. dnes,13, 2007, No. 4, p. 200-208.
Category: Comprehensive Reports, Original Papers, Case Reports

Overview

The article has summarized partial results of the project of evaluation and implementation method for collection and long-term storage packed red cells (RBC) for strategic, special and therapeutic findings of the Army of the Czech Republic as well as the state. The aim of the study was quality and stability evaluation of cryopreserved RBCs collected by different methods. The source of studied RBCs was double erytrocytapheresis (Group A), whole blood collection with buffy-coat removing (Group B), double erytrocytapheresis with in-line leukofiltration (Group C) and whole blood collection with in-line leukofiltration (Group D). This study compares “non-leukodepleted” RBCs (Group A and B) and “leukodepleted” RBCs (Group C and D). Tested RBCs were frozen in 40% glycerol and stored at minimum -65°C for at least 30 days, thawed, deglycerolized, and stored for 21 days at 4±2°C. Glycerolization and deglycerolization were performed with functionally closed system using the Haemonetics ACP 215 machine. In-vitro haematological and biochemical variables were tested on day 0-7-14-21 after deglycerolization. The observed changes of studied haematological and biochemical parameters could be most probably consistent with gradual degradation of non-survival RBCs after freeze-thaw-wash-reconstitution process. Some variables (such as 2,3-DPG, phosphate levels, pH and osmolality) indicate the equilibrium establishment in RBCs during the first 7 days after reconstitution. The results suggest the superior stability of leukodepleted cryopreserved RBCs, collected from whole blood or apheresis, reconstituted in AS-3 after reconstitution related to the non-leukodepleted RBCs, obtained by use of the both methods. It is confirmed by the slow haemolysis and supernatant haemoglobin growth in dependence of storage time. Reconstituted leukodepleted RBCs exhibit significantly higher time stability. No change of 2,3-DPG variable was observed between non-leukodepleted and leukodepleted RBCs. It could be supposed, that this variable is the physiological function of survival RBCs. In contrast to the leukodepletion, the primary source of red blood cells collection (apheresis or whole blood) does not affect stability a quality of RBCs units reconstituted in AS-3. The study demonstrate the superiority of leukodepleted RBCs obtained by apheresis or from whole blood over the non-leukodepleted RBCs (non-filtrated RBCs), reconstituted in AS-3, for extended storage up to 21 days at temperature of 2–6 °C.

Key words:
cryopreservation of red cell, deep frozen blood, reconstitution, glycerolisation, deglycerolisation, crisis blood policy, Nutricel, AS-3, double erythrocytapheresis


Sources

1. Hess JR, Thomas MJ. Blood use in war and disaster: lessons from the past century. Transfusion 2003 Nov; 43(11): 1622-33.

2. Bohoněk M, Chmátal P, Černohous M. Laboratoř a transfúzní služba 7. polní nemocnice, Trans hemat dnes 2003; 9(4): 185–8.

3. Chmátal P, Bohoněk M, Hašek R, Černohous M, Dobiášová M. 7. polní nemocnice AČR v jižním Iráku: Statistika odborné práce, aspekty zahraniční mise. Rozhl v chir 2004; 86(1): 37–40.

4. Bohoněk M. Vojenská transfúzní služba, Válečné vnitřní lékařství – Vybrané kapitoly z válečného vnitřního lékařství pro pregraduální studium, Učební texty FVZ UO, 2005, Svazek 341:17–34.

5. Chmátal P, Bohoněk M, Dobiášová M, Černohous M, Hašek R. A humanitarian mission in southern Iraq: utilization of the 7th Field Hospital of the Army of the Czech Republic—a report on its medical activities and working conditions, Mil Med 2005; 170(6): 473–5.

6. Bohoněk M, Petráš M, Turek I, et al. Parametry kvality kryokonzervovaných erytrocytů rekonstituovaných v roztoku AS-3 (Nutricel). Trans Hemat dnes 2006; 12(4): 208–216.

7. Nepublikovaná data ze Závěrečné zprávy: „Otevřené klinické hodnocení účinnosti erytrocytů z aferézy kryokonzerovaných rekonstituovaných v Nutricelu nebo SAG-M u zdravých dobrovolníků“, 18.8.2005

8. Hess JR. Red cell freezing and its impact on the supply chain. Transfus Med 2004; 14(1): 1–8. Review.

9. Valeri CR, Ragno G, Pivace LE, et al. An experiment with glycerol–frozen red blood cells store at -80 degrees C for up to 37 years. Vox Sang 2000; 79(3): 168–74.

10. Valeri CR, Ragno G, Pivacek LE, Srey R, Hess JR, Lippert LE, Mettille F, Fahie R, O’Neill EM, Szymanski IO. A multicenter study of in vitro and in vivo values in human RBCs frozen with 40-percent (wt/vol) glycerol and stored after deglycerolization for 15 days at 4 degrees C in AS-3: assessment of RBC processing in the ACP 215. Transfusion 2001; 41(7): 933–9.

11. Valeri CR., Pivacek LE., Cassidy GP., Ragno G. In vitro and in vivo measurements of human RBCs frozen with glycerol and subjected to various storage temperatures before deglycerolization and storage at 4°C for 3 days. Transfusion 2001; 41(3): 401–5.

12. Valeri CR, Ragno G, Pivacek L, O’Neill EM. In vivo survival of apheresis RBCs, frozen with 40-percent (wt/vol) glycerol, deglycerolized in the ACP 215, and stored at 4 degrees C in AS-3 for up to 21 days. Transfusion 2001; 41(7): 928–32.

13. Bandarenko N, Hay SN, Holmberg J, Whitley P, Taylor HL, Moroff G, Rose L, Kowalsky R, Brumit M, Rose M, Sawyer S, Johnson A, McNeil D, Popovsky MA. Extended storage of AS-1 and AS-3 leukoreduced red blood cells for 15 days after deglycerolization and resuspension in AS-3 using an automated closed system. Transfusion 2004; 44(11): 1656–62.

14. Valeri CR, Srey R, Tilahun D, Ragno G. The in vitro quality of red blood cells frozen with 40 percent (wt/vol) glycerol at -80 degrees C for 14 years, deglycerolized with the Haemonetics ACP 215, and stored at 4 degrees C in additive solution-1 or additive solution-3 for up to 3 weeks. Transfusion 2004; 44(7): 990–5.

15. Grose HL, Byrne KM, Salata JM, Rentas FJ, Stroncek DF. In vitro variables of red blood cell components collected by apheresis and frozen 6 and 14 days after collection. Transfusion 2006; 46(7): 1178–83.

16. Valeri CR, Pivacek LE, Cassidy GP, Ragno G. 24-hour 51Cr post-transfusion survival, 51Cr life span and haemolysis of red blood cells stored at 4 degrees C for 56 days in AS-3. Vox Sang 2001; 80(1): 48–50.

17. Gibson JG, Tullis JL, Tinch RJ, Ryan WR, Forte SD. The Post-thaw Viability of Ted Blood Cells of ACD and CPD Blood Preserved in the Frozen State with and without Added Adenine. Transfusion 1972; 12(3): 198–207.

18. Valeri CR, Valeri DA, Anastasi J, Vecchione JJ, Dennis RC, Emerson CP. Freezing in the primary polyvinlchloride Plastic Collection Bag: A New system for Preparing and Freezing Nonrejuvenated and Rejuvenated Red Blood Cells, Transfusion 1981; 21(2): 138–49.

19. Valeri CR, Pivace LE, Cassidy GP, Rango G. The survival, function, and hemolysis of human RBCs stored at 4°C in additive slution (AS-1, AS-3, or AS-5) for 42 days and then bochemimically modifie, frozen, thawe, washed, and stored at 4°C in sodium chloride and glucose solution for 24 hours. Transfusion 2000; 40(11): 1341–5.

20. Lecak J, Scott K, Young C, Hannon J, Acker JP. Evaluation of red blood cells stored at –80 degrees C in excess of 10 years. Transfusion 2004; 44(9): 1306–13.

21. Hess JR, Kagen LR, van der Meer PF, et al. Interlaboratory comparison of red-cell ATP, 2,3-diphosphoglycerate and haemolysis measurements. Vox Sang 2005; 89(1): 44–8.

22. Hess JR, Hill HR, Oliver CK, Lippert LE, Greenwalt TJ. The effect of two additive solutions on the postthaw storage of RBCs. Transfusion 2001; 41(7): 923–7.

23. Valeri CR, Pivacek LE, Cassidy GP, Ragno G. Posttransfusion survival (24-hour) and hemolysis of previously frozen, deglycerolized RBCs after storage at 4 degrees C for up to 14 days in sodium chloride alone or sodium chloride supplemented with additive solutions. Transfusion 2000; 40(11): 1337–40.

24. Valeri CR, Pivacek LE, Cassidy GP, Ragno G. In vitro and in vivo measurements of gamma-radiated, frozen, glycerolized RBCs. Transfusion 2001; 41(4): 545–9.

25. Dirk de Korte, Kleine M, Verhoeven A. Storage of red cell concentrates with maintenance of both 2,3-DPG and ATP, Poster, XXVIIIth. Congress of the International Socety of Blood Transfusion, Edinburgh 11-15th July 2004.

26. Lelkens CC, Noorman F, Koning JG, Truijens-de Lange R, Stekkinger PS, Bakker JC, Lagerberg JW, Brand A, Verhoeven AJ. Stability after thawing of RBCs frozen with the high- and low-glycerol method. Transfusion 2003; 43(2): 157–64.

27. Soli M, Blanco L, Riggert J, Martinez-Clavel A, Lucas C, Lunghi M, Belloni M, Wolf C, van Waeg G, Antoon M. A multicentre evaluation of a new filtration protocol for leucocyte depletion of high-haematocrit red blood cells collected by an automated blood collection system. Vox Sang 2001; 81(2): 108–12.

Labels
Haematology Internal medicine Clinical oncology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#