#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Current clinical applications of 3D printing in the management of complex fractures


Authors: M. Chovanec;  M. Krtička;  J. Šrámek;  J. Kovařík
Authors‘ workplace: Klinika úrazové chirurgie, Fakultní Nemocnice Brno, Česká republika
Published in: Rozhl. Chir., 2024, roč. 103, č. 5, s. 158-166.
Category: Review
doi: https://doi.org/10.33699/PIS.2024.103.5.158–166

Overview

The field of skeletal traumatology has undergone revolutionary changes worldwide over the last decade with the development of 3D printing technologies. This review aims to provide a comprehensive overview of how 3D printing is transforming fracture treatment and opening up new possibilities in the management of complex fractures. The use of 3D printing in medicine offers a new dimension in precision and customisation of treatment, enabling the creation of personalised surgical templates, individualised implants and tools. The development of 3D printing is closely linked to other technological advances, such as augmented reality methods, which represent a significant step forward in the visualisation and planning of surgical procedures. Although 3D printing offers many advantages, its integration into routine clinical practice still faces many challenges. This article examines the history and development of 3D printing technology, materials used in medicine, preoperative planning, the creation of surgical guides, the fabrication of patient-specific implants, and the integration of 3D printing and augmented reality in skeletal surgery, highlighting the technical, logistical, and ethical challenges of implementing this technology in surgical practice.

Keywords:

Trauma surgery – fracture – 3D printing – augmented reality


Sources
  1. Samaila EM, Negri S, Zardini A, et al. Value of three-dimensional printing of fractures in orthopaedic trauma surgery. J Int Med Res. 2020;48(1):300060519887299. doi:10.1177/0300060519887299.
  2. Merema BJ, Kraeima J, Duis KT, et al. The design, production and clinical application of 3D patient-specific implants with drilling guides for acetabular surgery.  Injury  2017;48(11):2540–2547.doi:10.1016/j.injury.2017.08.059.
  3. Azlin M, Ilyas R, Zuhri M, et al. 3D printing and shaping polymers, composites, and nanocomposites: A review. Polymers 2022;14,180. doi:10.3390/polym14010180.
  4. Quan H, Zhang T, Xu H, et al. Photo-curing 3D printing technique and its challenges. Bioactive Materials 2020;5(1):110–115. doi:10.1016/j.bioactmat.2019.12.003.
  5. Woern AL, Byard DJ, Oakley RB, et al. Fused particle fabrication 3-D printing: Recycled materials’ optimization and mechanical properties. Materials 2018;11(8):1413. doi:10.3390/ma11081413.
  6. Manero A, Smith P, Sparkman J, et al. Implementation of 3D printing technology in the field of prosthetics: Past, present, and future. Int J Environ Res Public Health 2019;16(9):1641. doi:10.3390/ijerph16091641.
  7. Lee AK, Lin TL, Hsu CJ, et al. Three-dimensional printing and fracture mapping in pelvic and acetabular fractures: A systematic review and meta-analysis. J Clin Med. 2022;11(18):5258. doi:10.3390/ jcm11185258.
  8. You Y, Niu Y, Sun F, et al. Three-dimensional printing and 3D slicer powerful tools in understanding and treating neurosurgical diseases. Front Surg. 2022;9:1030081. doi:10.3389/fsurg.2022.1030081.
  9. Beato PS, Poologasundarampillai G, Nommeots-Nomm A, et al. Materials for 3D printing in medicine: metals, polymers, ceramics, and hydrogels. In: Kalaskar DM, editor. 3D printing in medicine (2nd edition). Woodhead Publishing Series in Biomaterials. Woodhead Publishing 2023:59–103.  doi:10.1016/B978-0-323-89831-7.00002-X.
  10. Peleshok SA, Golovko KP. 3D printing and medicine. Russian Military Medical Academy Reports 2022;41(3):325–333. doi:10.17816/rmmar88645.
  11. Kozior T, Bochnia J, Zmarzly P, et al. Waviness of freeform surface characterizations from austenitic stainless steel (316L) manufactured by 3D printing-selective laser melting (SLM) technology. Materials 2020;13(19):4372. doi:10.3390/ ma13194372.
  12. Poologasundarampillai G, Nommeots-Nomm A. Materials for 3D printing in medicine: Metals, polymers, ceramics, hydrogels. In Kalaskar D, editor 3D Printing in medicine. Woodhead Publishing Ltd. 2017:43–71. doi:10.1016/B978-0-08-100717-4.00002-8.
  13. Mamo HB, Adamiak M, Kunwar A. 3D printed biomedical devices and their applications: A review on state-of-the-art technologies, existing challenges, and future perspectives. J Mech Behav Biomed Mater 2023;143:105930. doi:10.1016/j. jmbbm.2023.105930.
  14. Li Z, Wang Q. Recent patents on 3D printing technology in artificial bone printing devices, materials and related applications. Recent Patents on Engineering 2023;17(5):24–35. doi:10.2174/1872212116666220520123545.
  15. Lee A, Lin TL, Hsu CJ, et al. Three-dimensional printing and fracture mapping in pelvic and acetabular fractures: A systematic review and meta-analysis. J Clin Med. 2022;11(18):5258. doi:10.3390/ jcm11185258.
  16. Hu C, Qiu B, Cen C, et al. 3D printing assisted MIPO for treatment of complex middle-proximal humeral shaft fractures. BMC Musculoskelet Disord. 2024;25(1):1–12. doi:10.1186/s12891-024-07202-w.
  17. Uhl JF, Sufianov A, Ruiz C, et al. The use of 3D printed models for surgical simulation of cranioplasty in craniosynostosis as training and education. Brain Sci. 2023;13(6):894. doi: 10.3390/brainsci13060894.
  18. Mosleh M, Santaniello T, Rizzetto F, et al. Hybrid additive fabrication of a transparent liver with biosimilar haptic response for preoperative planning. Diagnostics 2021;11(9):1734. doi:10.3390/diagnostics11091734.
  19. Tejo-Otero A, Buj-Corral I, Fenollosa-Artés F. 3D printing in medicine for preoperative surgical planning: A review. Ann Biomed Eng. 2020;48(2):536–555. doi:10.1007/s10439-019-02411-0.
  20. Paramasivam V, Sindhu, Singh G, et al. 3D printing of human anatomical models for preoperative surgical planning. Procedia Manufacturing 2020;48:684–690. doi:10.1016/j.promfg.2020.05.100.
  21. Green N. Impact of in-house 3D printing used as a preoperative planning aid for complex fracture treatment. Masters by research thesis. Queensland University of Technology 2017. doi:10.5204/thesis. eprints.113727.
  22. Maryada VR, Mulpur P, Eachempati KK, et al. Pre-operative planning and templating with 3-D printed models for complex primary and revision total hip arthroplasty. J Orthop. 2022;34:240–245. doi:10.1016/j.jor.2022.09.004.
  23. Thorn C, Ballard J, Lockhart C, et al. The perioperative utility of 3D printed models in complex surgical care: feedback from 106 cases. Ann R Coll Surg Engl.  2023;105:747–753  doi:10.1308/rcsann.2022.0127.
  24. Hoekstra H, Rosseels W, Sermon A, et al. Corrective limb osteotomy using patient specific 3D-printed guides: A technical note.  Injury  2016;47(10):2375–2380.doi:10.1016/j.injury.2016.07.021.
  25. Schweizer A, Fürnstahl P, Nagy L. Three-dimensional correction of distal radius intra-articular malunions using patient-specific drill guides. J Hand Surg Am. 2013;38:2339–2347. doi:10.1016/j. jhsa.2013.09.023.
  26. Jariwala SH, Lewis G, Bushman ZJ, et al. 3D Printing of personalized artificial bone scaffolds. 3D printing and additive manufacturing 2015;2(2):56–64. doi:10.1089/3dp.2015.0001.
  27. Mayfield CK, Ayad M, Lechtholz-Zey E, et al. 3D-printing for critical sized bone defects: Current concepts and future directions. Bioengineering 2022;9(11):681. doi:10.3390/bioengineering9110680.
  28. Arealis G, Nikolaou V. Bone printing: new frontiers in the treatment of bone defects. Injury 2015;46(Suppl 8):S20–S22. doi:10.1016/S0020-1383(15)30050-4.
  29. Xue N, Ding X, Huang R, et al. Bone tissue engineering in the treatment of bone defects. Pharmaceuticals 2022;15(7):879. doi:10.3390/ph15070879.
  30. Tetsworth K, Block S, Glatt V. Putting 3D modelling and 3D printing into practice: virtual surgery and preoperative planning to reconstruct complex post-traumatic skeletal deformities and defects. SICOT J. 2017;3:16. doi:10.1051/sicotj/2016043.
  31. Murr L. Global trends in the development of complex, personalized, biomedical, surgical implant devices using 3D printing/additive manufacturing: A review. Med Devices Sens. 2020;3:e10126. doi:10.1002/MDS3.10126.
  32. Singh TS, Bhola N, Reche A. The utility of 3D printing for surgical planning and patient-specific implant design in maxillofacial surgery: A narrative review. Cureus 2023;15(11):e48242. doi:10.7759/cureus.48242.
  33. Domsta V, Seidlitz A. 3D-printing of drug-eluting implants: An overview of the current developments described in the literature. Molecules 2021;26(13):4066. doi:10.3390/molecules26134066.
  34. Chakravarthy D, Bijja S, Karthik A, et al. 3D printing in oral and maxillofacial surgery. International Journal of Innovative Research in Medical Science 2023;8(08):325–334. doi:10.239558/ijirms/vol-08-i08/1705.
  35. Moreta-Martinez R, Pose-Díez-de-la-Lastra A, Calvo-Haro JA, et al. Combining augmented reality and 3D printing to improve surgical workflows in orthopedic oncology: smartphone application and clinical evaluation. Sensors (Basel) 2021;21(4):1370. doi:10.3390/s21041370.
  36. Moreta-Martinez R, García-Mato D, García-Sevilla M, et al. Augmented reality in computer-assisted interventions based on patient-specific 3D printed reference. Health Technol Lett. 2018;5(5):162–166. doi:10.1049/htl.2018.5072.
  37. Ayoub A, Pulijala Y. The application of virtual reality and augmented reality in oral & maxillofacial surgery. BMC Oral Health 2019;19:238.  doi:10.1186/s12903-019-0937-8.
  38. Iqbal H, Tatti F, Baena F. Augmented reality in robotic assisted orthopaedic surgery: A pilot study. J Biomed Informatics 2021;120:103841. doi:10.1016/j. jbi.2021.103841.

MUDr. M. Chovanec
Klinika úrazové chirurgie,
Fakultní Nemocnice Brno
Jihlavská 20, Brno
e-mail:
marteenek@gmail.com

Labels
Surgery Orthopaedics Trauma surgery
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#