Scintigraphy and diabetic cardiomyopathy
Authors:
Otto Lang
Authors‘ workplace:
Klinika nukleární medicíny, UK 3. LF a FNKV, Praha
10
Published in:
NuklMed 2013;2:62-67
Category:
Review Article
Overview
Introduction:
Scintigraphy is an optimal method for molecular imaging; therefore, it is useful for evaluation of patients with metabolic disorders. Diabetic cardiomyopathy is a heart failure without evidence of coronary atherosclerosis, hypertension or valvular disease. The cause is still not fully clarified; most probably it is multifactorial and involves metabolic changes including insulin resistance, microcirculation disorder including endothelial dysfunction, autonomic neuropathy and interstitial fibrosis.
Material and methods:
Scintigraphy makes possible to assess many pathophysiological processes that can participate in the progression of diabetic cardiomyopathy. Glucose, fatty acids and acetate can be used as substrates mainly in basal experiments. Scintigraphy can also be used to detect impairment of microcirculation with subsequent decrease of myocardial perfusion mainly in clinical practice. Labeled metabolic analogues of norepinephrine or direct labeling of catecholamines can be used for assessment of autonomous neuropathy.
Results:
Metabolic plasticity of myocardium is impaired; there is compromised glucose utilization with increased accumulation of fatty acids. Myocardial contractility is decreased due to lower energy production; lipotoxicity causes apoptosis with subsequent myocardial fibrosis. Myocardial perfusion deficit was detected in 20 % to 40 % of asymptomatic diabetics. They also have decreased vasodilatation capacity even without impairment of epicardial vessels. Regional disorder of sympathetic innervation in diabetics was also proved.
Conclusion:
Scintigraphic methods have a high diagnostic potential. They make possible timely and effective therapy. However, they should be used with caution in clinical practice and mainly in symptomatic or high-risk patients.
Key words:
scintigraphy, diabetic cardiomyopathy, glucose, fatty acids, lipotoxicity
Sources
1. Khavandi K, Khavandi A, Asghar O et al. Diabetic cardiomyopathy – a distinct disease? Best Practice & Research Clinical Endocrinology & Metabolism 2009;23:347-360
2. Voulgari C, Papadogiannis D, Tentolouris N. Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vasc Health Risk Manag 2010;6:883-903
3. Sasso FC, Rambaldi PF, Carbonara O et al. Perspectives of nuclear diagnostic imaging in diabetic cardiomyopathy. Nutrition, Metabolism & Cardiovascular Diseases 2010;20:208-216
4. Maya L, Villarreal FJ. Diagnostic approaches for diabetic cardiomyopathy and myocaradial fibrosis. J Mol Cell Cardiol 2010;48:524-529
5. Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord 2010;11:31-39
6. Tarquini R, Lazzeri C, Pala L et al. The diabetic cardiomyopathy. Acta Diabetol 2011;48:173-181
7. Fisher BM, Gillen G, Lindop GB et al. Cardiac function and coronary arteriography in asymptomatic type-1 (insulin-dependent) diabetic patients: evidence for a specific diabetic heart disease. Diabetologia 1986;29:706-712
8. Maron BJ. Is the 2006 American Heart Association classification of cardiomyopathies the gold standard? Circ Heart Fail 2008;1:72-76
9. Duncan JG. Mitochondrial dysfunction in diabetic cardiomyopathy. Biochimica et Biophysica Acta 2011;1813:1351–1359
10. Rubler S, Dlugash J, Yuceoglu YZ et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972;30:595-602
11. Taegtmeyer H. Tracing Cardiac Metabolism In Vivo: One Substrate at a Time. J Nucl Med 2010; 51:80S-87S
12. Hue L, Taegtmeyer H. The randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab 2009;297:E578-E591
13. Russell LK, Finck BN, Kelly. Mouse models of mitochondrial dysfunction and heart failure. J Mol Cell Cardiol DP 2005;38:81-91
14. Steinbusch LKM, Schwenk RW, Ouwens DM et al. Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes. Cell Mol Life Sci 2011;68:2525-2538
15. Heather LC, Clarke K. Metabolism, hypoxia and the diabetic heart. Journal of Molecular and Cellular Cardiology 2011;50:598-605
16. Murarka S, Movahed MR. Diabetic cardiomyopathy. J Cardiac Fail 2010;16:971-979
17. Vered A, Battler A, Segal P et al. Exercise-induced left ventricular dysfunction in young men with asymptomatic diabetes mellitus (diabetic cardiomyopathy). Am J Cardiol 1984;54:633-637
18. Aneja A, Tang WH, Bansilal S et al. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 2008;121:748-757
19. Gropler RJ, Beanlands RSB, Dilsizian V, et al. Imaging myocardial metabolic remodeling. J Nucl Med 2010;51:88S-101S
20. Lang O, Malá M, Kleisner I et al. Detekce anihilačního záření 18F technikou SPECT - klinické zkušenosti s 18F-fluorodeoxyglukosou (FDG) u pacientů po infarktu myokardu. Cor Vasa 1999;41S:34
21. Lang O, Kamínek M. Radionuklidové zobrazování viability myokardu. Kardiol prax 2006;4:230-233
22. Lang O, Malá M, Kleisner I et al. Viabilita myokardu hodnocená pomocí průkazu přítomnosti metabolizmu nebo kontraktilní rezervy - srovnání principiálně odlišných metod. Cor Vasa 2000;42S:42
23. Lang O, Malá M, Kleisner I et al. Srovnání 201Tl-chloridu s 18F-FDG pro detekci viability myokardu. Cardio3 2003 05:A01
24. Bashir A, Gropler RJ. Translation of Myocardial Metabolic Imaging Concepts into the Clinics. Cardiol Clin 2009;27: 291-319
25. Kontos MC, Dilsizian V, Weiland F et al. Iodofiltic acid I 123 (BMIPP) fatty acid imaging improves initial diagnosis in emergency department patients with suspected acute coronary syndromes: a multicenter trial. J Am Coll Cardiol 2010;56:290-299
26. Nishimura M, Tsukamoto K, Hasebe N et al. Prediction of cardiac death in hemodialysis patients by myocardial fatty acid imaging. J Am Coll Cardiol 2008;51:139–145
27. Flotats A, Carrió I. Is Cardiac Autonomic Neuropathy the Basis of Nonischemic Diabetic Cardiomyopathy? JACC Cardiovasc Imaging 2010;3:1216-1218
28. Sacre JW, Franjic B, Jellis CL et al. Association of cardiac autonomic neuropathy with subclinical myocardial dysfunction in type 2 diabetes. J Am Coll Cardiol Img 2010;3:1207–1215
29. Djaberi R, Beishuizen ED, Pereira AM, et al. Non-invasive cardiac imaging techniques and vascular tools for the assessment of cardiovascular disease in type 2 diabetes mellitus. Diabetologia 2008;51:1581-1593
30. Freeman, M. Myocardial perfusion imaging in diabetes mellitus. Can J Cardiol 2006;22(S):22A-25A
31. Lang O, Malá M, Trešlová L et al. Zobrazení myokardiální perfuze metodou SPECT v souboru pacientů se suspektní nebo potvrzenou ICHS – srovnání pacientů s diabetem a bez diabetu. Diabetologie, metabolismus, endokrinologie, výživa 2000;3S:28-29
32. Kamínek M, Mysliveček M, Škvařilová M et al. Prognostický význam zátěžové tomografické scintigrafie myokardiální perfuze u diabetických pacientů. Vnitř. Lék. 2001;45:739-743
33. Metelková I, Kamínek M, Sovová E et al. Stratifikace rizika pomocí zátěžového SPECT zobrazení myokardu v kombinaci se stanovením koronárního kalciového skóre u rizikových pacientů s diabetem a/nebo ledvinným selháním. Vnitř Lék 2010; 56: 1122-1129
34. Wackers FJT, Chyun DA, Young LH, et al. Resolution of asymptomatic myocardial ischemia in patients with type 2 diabetes in the Detection of Ischemia in Asymptomatic Diabetics (DIAD) study. Diabetes Care 2007;30:2892-2898
35. Dence CS, Herrero P, Schwarz SW et al. Imaging myocardium enzymatic pathways with carbon-11 radiotracers. Methods Enzymol 2004;385:286–315
36. Burkart EM, Sambandam N, Han X et al. Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest 2007;117:3930–3939
37. Bengel FM, Higuchi T, Javadi MS, et al. Cardiac positron emission tomography. J Am Coll Cardiol 2009;54:1–15
38. Schindler TH, Zhang XL, Mhiri L, et al. Role of PET in the evaluation and understanding of coronary physiology. J Nucl Cardiol 2007;14:589-603
39. Graf S, Khorsand A, Gwechenberger M, et al. Typical chest pain and normal coronary angiogram: cardiac risk factor analysis versus PET for detection of microvascular disease. J Nucl Med 2007; 48:175–181
40. Sherif HM, Nekolla SG, Saraste A et al. Simplified quantification of myocardial flow reserve with flurpiridaz F 18: validation with microspheres in a pig model. J Nucl Med 2011;52:617-624
41. Berman DS, Germano G, Slomka PJ. Improvement in PET myocardial perfusion image quality and quantification with flurpiridaz F 18. J Nucl Cardiol 2012;19S1:S38-45
42. Berman DS, Maddahi J, Tamarappoo BK et al. Phase II safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease: flurpiridaz F 18 positron emission tomography. J Am Coll Cardiol 2013;61:469-477
43. Lang O, Kamínek M. PET/CT v kardiologii. Cor Vasa 2010;52:506-512
Labels
Nuclear medicine Radiodiagnostics RadiotherapyArticle was published in
Nuclear Medicine
2013 Issue 4
Most read in this issue
- Pyogenic staphylococcal sacroiliitis diagnosed by three-phase bone scan
- Spine metastasis of malignant melanoma detected by SPECT/CT on gallium scintigraphy
- Scintigraphy and diabetic cardiomyopathy