Polydentate ligands for modern radiopharmaceuticals containing 64Cu – review
Authors:
Roman Staník; Jan Světlík
Authors‘ workplace:
Katedra farmaceutickej analýzy a nukleárnej farmácie, FaF UK v Bratislave, Slovensko
Published in:
NuklMed 2013;2:2-6
Category:
Review Article
Overview
Molecular imaging techniques (PET, SPECT) play a major role in nuclear medicine. 64Cu appears to be the important radionuclide having the potential to find the application in the diagnostic as well as in the therapy. However, 64Cu must be delivered to the living system in the form of radiopharmaceutical with targeted biodistribution and sufficient in vivo stability. Therefore, polydentate ligand forming the complex compound with the copper radionuclide is often the essential part of the whole radiopharmaceutical. This review is devoted to the classification of ligands which can produce chelate with 64Cu.
Key words:
polydentate ligands, 64Cu, modern radiopharmaceuticals, review
Sources
1. Bé MM, Chisté V, Dulieu C et al. Table of Radionuclides (Vol. 1 – A = 1 to 150). France, Bureau International des Poinds et Mesures, 2004, 311 p
2. Qaim SM. Decay data and production yields of some non-standard positron emitters used in PET. Q J Nucl Med Mol Imaging 2008; 52:111-120
3. Mathias CJ, Green MA, Morrison WB et al. Evaluation of Cu-PTSM as a tracer of tumor perfusion: comparison with labeled microspheres in spontaneous canine neoplasms. Nucl Med Biol 1994;21:83-87
4. Shelton ME, Green MA, Mathias CJ et al. Kinetics of Copper-PTSM in Isolated Hearts: A Novel Tracer for Measuring Blood Flow with Positron Emission Tomography. J Nucl Med 1989;30:1843-1847
5. Mathias CJ, Welch MJ, Raichle ME et al. Evaluation of a Potential Generator-Produced PET Tracer for Cerebral Perfusion Imaging: Single-Pass Cerebral Extraction Measurements and Imaging with Radiolabeled Cu-PTSM. J Nucl Med 1990;31:351-359
6. Lewis JS, Sharp TL, Laforest R et al. Tumor Uptake of Copper-Diacetyl-Bis(N4-Methylthiosemicarbazone): Effect of Changes in Tissue Oxygenation. J Nucl Med 2001;42:655
7. Sun X, Wuest M, Kovacs Z et al. In vivo behavior of copper-64-labeled methanephosphonate tetraaza macrocyclic ligands. J Biol Inorg Chem 2003;8:217-225
8. Michelle TM, Donnelly PS. Peptide Targeted Copper-64 Radiopharmaceuticals. Curr Top Med Chem 2011;11:500-520
9. Pettit LD, Steel L, Kowalik T et al. Specific binding of tyrosine residue in copper(II) complexes of Tyr-Pro-Gly-Tyr and Tyr-Gly-Pro-Tyr. J Chem Soc Dalton Trans 1985;6:1201-1205
10.Meares CF. Chelating agents for the binding of metal ions to antibodies. Nucl Med Biol 1986;13:311-318
11.Sun X, Anderson CJ. Production and applications of copper-64 radiopharmaceuticals. Methods Enzymol 2004;386:237-261
12.Cole WC, DeNardo SJ, Meares CF et al. Serum stability of 67Cu chelates: comparison with 111In and 57Co. Int J Rad Appl Instrum B 1986;13:363–368
13.Cole WC, DeNardo SJ, Meares CF et al. Comparative serum stability of radiochelates for antibody radiopharmaceuticals. J Nucl Med 1987;28:83-90
14.Franz J, Freeman GM, Barefield EK et al. Labeling of antibodies with 64Cu using a conjugate containing a macrocyclic amine chelating agent. Int J Rad Appl Instrum B 1987;14:479-484
15.Morphy JR, Parker D, Kataky R et al. Towards Tumour Targeting with Cu-Radiolabelled Macrocyc1e-Antibody Conjugates. JCS Chem Commun 1989;5:792-794
16.Ping LW, Meyer LA, Capretto DA et al. Receptor-binding, biodistribution, and metabolism studies of (64)Cu-DOTA-Cetuximab, a PET-imaging agent for epidermal growth-factor receptor-positive tumors. Cancer Biother Radiopharm 2008;23:158–171
17.Cai W, Wu Y, Chen K et al. In vitro and in vivo characterization of 64Cu-labeled Abegrin, a humanized monoclonal antibody against integrin alpha v beta 3. Cancer Res 2005; 66:9673–9681
18.Wu Y, Zhang X, Xiong Z et al. MicroPET imaging of glioma integrin αvβ3 expression using 64Cu-labeled tetrameric RGD peptide. J Nucl Med 2005;46:1707–1718
19.Bass LA, Wang M, Welch MJ et al. In vivo transchelation of copper-64 from TETA octreotide to superoxide dismutase in rat liver. Bioconjugate Chem 2000;11:527–532
20.Prasanphanich AF, Prasant KN, Tammy LR et al. Cu-NOTA-8-Aoc-BBN(7-14)NH2] targeting vector for positron-emission tomography imaging of gastrin-releasing peptide receptor-expressing tissues. Proc Natl Acad Sci USA 2007;104:12462-12467
21.Woodin KS, Heroux KJ, Boswell CA et al. Kinetic inertness and electrochemical behavior of copper(II) tetraazamacrocyclic complexes: possible implications for in vivo stability. Eur J Inorg Chem 2005;2005:4829-4833
22.Boswell CA, Sun X, Niu W et al. Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J Med Chem 2004;47:1465-1474
23.Sun X, Wuest M, Weisman GR et al. Radiolabeling and in vivo behavior of copper-64-labeled cross-bridged cyclam ligands.J Med Chem 2002;45:469-477
24.Jones-Wilson TM, Deal KA, Anderson CJ et al. The in vivo behavior of copper-64-labeled azamacrocyclic compounds. Nucl Med Biol 1998;25:523-530
25.Lewis EA, Boyle RW, Archibald SJ. Ultrastable complexes for in vivo use: a bifunctional chelator incorporating a cross-bridged macrocycle. Chemical Commun 2004;19:2212-2213
26.Sprague JE, Peng Y, Sun X et al. Preparation and biological evaluation of copper-64-labeled Tyr3-octreotate using a cross-bridged macrocyclic chelator. Clin Cancer Res 2004;10:8674-8682
27.Wadas TJ, Anderson CJ. Radiolabeling of TETA- and CB-TE2A-conjugated peptides with copper-64. Nat Prot 2006;1:3062-3068
28.Stigers DJ, Ferdani R, Weisman GR et al. A new phosphonate pendant-armed cross-bridged tetraamine chelator accelerates copper(II) binding for radiopharmaceutical applications. Dalton Trans 2011;39:1699-1701
29.Ferdani R, Stigers DJ, Fiamengo AL et al. Synthesis, Cu(II) complexation, 64Cu-labeling and biological evaluation of cross-bridged cyclam chelators with phosphonate pendant arms. Dalton Trans 2012;41:1938-1950
30.DiBartolo NM, Sargeson AM, Donlevy TM et al. Synthesis of a new cage ligand, SarAr, and its complexation with selected transition metal ions for potential use in radioimaging. J Chem Soc Dalton Trans 2001;15:2303-2309
31.Lears KA, Ferdani R, Liang K et al. In vitro and in vivo evaluation of 64Cu-labeled SarAr-bombesin analogs in gastrin-releasing peptide receptor-expressing prostate cancer. J Nucl Med 2011; 52:470-477
32.Voss SD, Smith SV, DiBartolo N et al. Positron emission tomography (PET) imaging of neuroblastoma and melanoma with 64Cu-SarAr immunoconjugates. Proc Natl Acad Sci USA 2007; 104:1-5
33.Smith SV. Molecular imaging with copper-64. J Inorg Biochem 2004;98:1874-1901
34.Park G, Dadachova E, Przyborowska A et al. Synthesis of novel 1,3,5-cis,cis-triaminocyclohexane ligand based Cu(II) complexes as potential radiopharmaceuticals and correlation of structure and serum stability. Polyhedron 2001;20:3155-3163
35.Ma D, Lu F, Overstreet T et al. Novel chelating agents for potential clinical applications of copper. Nucl Med Biol 2002;29:91-105
36.Brady ED, Chong H-S, Milenic DE et al. Development of a spectroscopic assay for bifunctional ligand-protein conjugates based on copper. Nucl Med Biol 2004;31:795-802
Labels
Nuclear medicine Radiodiagnostics RadiotherapyArticle was published in
Nuclear Medicine
2013 Issue 1
Most read in this issue
- A comparison of parameters of kits for 99mTc-radiopharmaceuticals for a cerebral perfusion diagnostics
- Polydentate ligands for modern radiopharmaceuticals containing 64Cu – review
- The long-term effectivity control of sentinel lymph node biopsy through the follow-up of complex therapy results